These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 39243935)
1. In situ remediation of mercury-contaminated groundwater through an in situ created reactive zone enabled by carboxymethyl cellulose stabilized FeS nanoparticles. Wang M; Han B; Zhao D; Hou S; Yin W; Gong Y Environ Pollut; 2024 Nov; 361():124902. PubMed ID: 39243935 [TBL] [Abstract][Full Text] [Related]
2. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles. Gong Y; Liu Y; Xiong Z; Kaback D; Zhao D Nanotechnology; 2012 Jul; 23(29):294007. PubMed ID: 22743738 [TBL] [Abstract][Full Text] [Related]
3. Impact of carboxymethyl cellulose coating on iron sulphide nanoparticles stability, transport, and mobilization potential of trace metals present in soils and sediment. Van Koetsem F; Van Havere L; Du Laing G J Environ Manage; 2016 Mar; 168():210-8. PubMed ID: 26708651 [TBL] [Abstract][Full Text] [Related]
4. Efficient remediation of mercury-contaminated groundwater using MoS Wang M; Han Q; Zhang M; Liu X; Liu B; Wang Z J Contam Hydrol; 2024 May; 264():104347. PubMed ID: 38657473 [TBL] [Abstract][Full Text] [Related]
5. Green remediation of mercury-contaminated soil using iron sulfide nanoparticles: Immobilization performance and mechanisms, effects on soil properties, and life cycle assessment. Lin D; Hu G; Li H; Wu F; Li L; Yang G; Zhuang L; Gong Y Sci Total Environ; 2024 Sep; 944():173928. PubMed ID: 38871308 [TBL] [Abstract][Full Text] [Related]
6. In-situ remediation of hexavalent chromium contaminated groundwater and saturated soil using stabilized iron sulfide nanoparticles. Wang T; Liu Y; Wang J; Wang X; Liu B; Wang Y J Environ Manage; 2019 Feb; 231():679-686. PubMed ID: 30391712 [TBL] [Abstract][Full Text] [Related]
7. Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Xiong Z; He F; Zhao D; Barnett MO Water Res; 2009 Dec; 43(20):5171-9. PubMed ID: 19748651 [TBL] [Abstract][Full Text] [Related]
8. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles. An B; Zhao D J Hazard Mater; 2012 Apr; 211-212():332-41. PubMed ID: 22119304 [TBL] [Abstract][Full Text] [Related]
9. Immobilization of Cr(VI) in Soil Using a Montmorillonite-Supported Carboxymethyl Cellulose-Stabilized Iron Sulfide Composite: Effectiveness and Biotoxicity Assessment. Zhang D; Xu Y; Li X; Liu Z; Wang L; Lu C; He X; Ma Y; Zou D Int J Environ Res Public Health; 2020 Aug; 17(17):. PubMed ID: 32825647 [TBL] [Abstract][Full Text] [Related]
10. A 3-dimensional micro- and nanoparticle transport and filtration model (MNM3D) applied to the migration of carbon-based nanomaterials in porous media. Bianco C; Tosco T; Sethi R J Contam Hydrol; 2016 Oct; 193():10-20. PubMed ID: 27607520 [TBL] [Abstract][Full Text] [Related]
11. Cr(VI) Reduction and Sequestration by FeS Nanoparticles Formed in situ as Aquifer Material Coating to Create a Regenerable Reactive Zone. Liu Z; Yang Q; Zhu P; Liu Y; Tong X; Cao T; Tomson MB; Alvarez PJJ; Zhang T; Chen W Environ Sci Technol; 2024 Apr; 58(16):7186-7195. PubMed ID: 38598770 [TBL] [Abstract][Full Text] [Related]
12. Colloidal activated carbon for in-situ groundwater remediation--Transport characteristics and adsorption of organic compounds in water-saturated sediment columns. Georgi A; Schierz A; Mackenzie K; Kopinke FD J Contam Hydrol; 2015 Aug; 179():76-88. PubMed ID: 26070009 [TBL] [Abstract][Full Text] [Related]
13. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles. Xie W; Liang Q; Qian T; Zhao D Water Res; 2015 Mar; 70():485-94. PubMed ID: 25577492 [TBL] [Abstract][Full Text] [Related]
14. Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: reaction mechanisms and effects of stabilizer and water chemistry. Gong Y; Liu Y; Xiong Z; Zhao D Environ Sci Technol; 2014 Apr; 48(7):3986-94. PubMed ID: 24568693 [TBL] [Abstract][Full Text] [Related]
15. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles. Li Y; Wang W; Zhou L; Liu Y; Mirza ZA; Lin X Chemosphere; 2017 Feb; 169():131-138. PubMed ID: 27870934 [TBL] [Abstract][Full Text] [Related]
16. Cr(VI) removal during cotransport of nano-iron-particles combined with iron sulfides in groundwater: Effects of D. vulgaris and S. putrefaciens. Liu X; Chen M; Wang D; Du F; Xu N; Sun W; Han Z J Hazard Mater; 2024 Jul; 472():134583. PubMed ID: 38749250 [TBL] [Abstract][Full Text] [Related]
17. Subsurface transport of carboxymethyl cellulose (CMC)-stabilized nanoscale zero valent iron (nZVI): Numerical and statistical analysis. Asad MA; Khan UT; Krol MM J Contam Hydrol; 2021 Dec; 243():103870. PubMed ID: 34418819 [TBL] [Abstract][Full Text] [Related]
18. In-situ degradation of soil-sorbed 17β-estradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles: Column studies. Han B; Zhang M; Zhao D Environ Pollut; 2017 Apr; 223():238-246. PubMed ID: 28108162 [TBL] [Abstract][Full Text] [Related]
19. Application of iron sulfide particles for groundwater and soil remediation: A review. Gong Y; Tang J; Zhao D Water Res; 2016 Feb; 89():309-20. PubMed ID: 26707732 [TBL] [Abstract][Full Text] [Related]
20. Efficient removal of mercury from simulated groundwater using thiol-modified graphene oxide/Fe-Mn composite in fixed-bed columns: Experimental performance and mathematical modeling. Huang Y; Wang M; Gong Y; Zeng EY Sci Total Environ; 2020 Apr; 714():136636. PubMed ID: 31991272 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]