These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 3924428)
1. Microsomal metabolism of the carcinogen, N-2-fluorenyl-acetamide, by the mammary gland and liver of female rats. II. Glucuronidation of ring- and N-hydroxylated metabolites of N-2-fluorenylacetamide. Malejka-Giganti D; Ryzewski CN Carcinogenesis; 1985 May; 6(5):687-92. PubMed ID: 3924428 [TBL] [Abstract][Full Text] [Related]
2. Microsomal metabolism of the carcinogen, N-2-fluorenylacetamide, by the mammary gland and liver of female rats. I. Ring- and N-hydroxylations of N-2-fluorenylacetamide. Malejka-Giganti D; Decker RW; Ritter CL; Polovina MR Carcinogenesis; 1985 Jan; 6(1):95-103. PubMed ID: 3967341 [TBL] [Abstract][Full Text] [Related]
3. Modifications of carcinogen metabolism in hepatic microsomes of suckling young by 3-methylcholanthrene or beta-naphthoflavone administered to lactating rats. Malejka-Giganti D; Decker RW; Ritter CL Biochem Pharmacol; 1983 Nov; 32(22):3335-44. PubMed ID: 6316979 [TBL] [Abstract][Full Text] [Related]
4. Sex hormone-mediated effects on the phase I and phase II metabolism of N-2-fluorenylacetamide. Modulation of 9-hydroxylation. Malejka-Giganti D; Magat WJ; Decker RW Biochem Pharmacol; 1989 Apr; 38(7):1075-82. PubMed ID: 2495797 [TBL] [Abstract][Full Text] [Related]
5. Modifications of hepatic microsomal 9-oxidation of N-2-fluorenylacetamide in response to gonadectomy and treatment of rats with phenobarbital or diethylnitrosamine. Malejka-Giganti D; Magat WJ; Decker RW Xenobiotica; 1989 Apr; 19(4):431-44. PubMed ID: 2501941 [TBL] [Abstract][Full Text] [Related]
6. Mixed function oxidase in the mammary gland and liver microsomes of lactating rats. Effects of 3-methylcholanthrene and beta-naphthoflavone. Ritter CL; Malejka-Giganti D Biochem Pharmacol; 1982 Jan; 31(2):239-47. PubMed ID: 6277340 [TBL] [Abstract][Full Text] [Related]
7. Microsomal azoreduction and glucuronidation in the metabolism of dimethylaminoazobenzene by the rat liver. Raza H; Levine WG; Chowdhury NR; Chowdhury JR Xenobiotica; 1987 Jun; 17(6):669-77. PubMed ID: 3114967 [TBL] [Abstract][Full Text] [Related]
8. Purification and properties of UDP-glucuronyltransferase from kidney microsomes of beta-naphthoflavone-treated rat. Yokota H; Ohgiya N; Ishihara G; Ohta K; Yuasa A J Biochem; 1989 Aug; 106(2):248-52. PubMed ID: 2509439 [TBL] [Abstract][Full Text] [Related]
9. Mammary carcinogenesis in the rat by topical application of fluorenylhydroxamic acids and their acetates. Malejka-Giganti D; Rydell RE; Gutmann HR Cancer Res; 1977 Jan; 37(1):111-7. PubMed ID: 830400 [TBL] [Abstract][Full Text] [Related]
10. Debenzoylating and deacetylating activities of rat liver and mammary gland microsomes. Effect of ovariectomy. Ritter CL; Malejka-Giganti D Biochem Pharmacol; 1995 Oct; 50(8):1265-72. PubMed ID: 7488243 [TBL] [Abstract][Full Text] [Related]
12. Inhibitory effect of disulfiram on rat mammary tumor induction by N-2-fluorenylacetamide and on its metabolic conversion to N-hydroxy-N-2-fluorenylacetamide. Malejka-Giganti D; McIver RC; Rydell RE J Natl Cancer Inst; 1980 Jun; 64(6):1471-7. PubMed ID: 6929383 [TBL] [Abstract][Full Text] [Related]
13. Glucuronidation of carcinogenic arylamine metabolites by rat liver microsomes. Wang CY; Zukowski K; Lee MS Biochem Pharmacol; 1985 Mar; 34(6):837-41. PubMed ID: 3919738 [TBL] [Abstract][Full Text] [Related]
14. Metabolite profile in milk of lactating rats after treatment with a carcinogen, N-2-fluorenylacetamide. Malejka-Giganti D; Magat WJ; Adelmann AM; Decker RW Drug Metab Dispos; 1987; 15(6):760-6. PubMed ID: 2893699 [TBL] [Abstract][Full Text] [Related]
15. Additional routes in the metabolism of phenacetin. Fischbach T; Lenk W Xenobiotica; 1985 Feb; 15(2):149-64. PubMed ID: 4002737 [TBL] [Abstract][Full Text] [Related]
16. Activation of certain N-arylacetamides and N-arylacetohydroxamic acids in relation to mammary gland tumorigenesis in the rat. Malejka-Giganti D Natl Cancer Inst Monogr; 1981 Dec; (58):69-77. PubMed ID: 6804871 [TBL] [Abstract][Full Text] [Related]
17. Rat liver microsomal UDP-glucuronosyltransferase activity toward thyroxine: characterization, induction, and form specificity. Barter RA; Klaassen CD Toxicol Appl Pharmacol; 1992 Aug; 115(2):261-7. PubMed ID: 1641859 [TBL] [Abstract][Full Text] [Related]
18. Hepatic microsomal metabolism of androst-4-ene-3,17-dione: relative importance of ring hydroxylation and aromatization in control and induced rat liver. Murray M; Cantrill E; Farrell GC J Steroid Biochem; 1988 Feb; 29(2):233-7. PubMed ID: 3347063 [TBL] [Abstract][Full Text] [Related]
19. Oxidation and glucuronidation of valproic acid in male rats--influence of phenobarbital, 3-methylcholanthrene, beta-naphthoflavone and clofibrate. Heinemeyer G; Nau H; Hildebrandt AG; Roots I Biochem Pharmacol; 1985 Jan; 34(1):133-9. PubMed ID: 3917666 [TBL] [Abstract][Full Text] [Related]
20. Effect of ovariectomy on the in vitro and in vivo activation of carcinogenic N-2-fluorenylhydroxamic acids by rat mammary gland and liver. Ritter CL; Bennett KK; Fullerton NF; Beland FA; Malejka-Giganti D Carcinogenesis; 1996 Nov; 17(11):2411-8. PubMed ID: 8968056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]