These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 39244520)

  • 21. A comparative life cycle assessment of recycling waste concrete powder into CO
    Kravchenko E; Sauerwein M; Besklubova S; Ng CWW
    J Environ Manage; 2024 Feb; 352():119947. PubMed ID: 38198842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Geopolymer Recycled Aggregate Concrete: From Experiments to Empirical Models.
    Le HB; Bui QB; Tang L
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33802294
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reusing exterior wall framing systems: A cradle-to-cradle comparative life cycle assessment.
    Cruz Rios F; Grau D; Chong WK
    Waste Manag; 2019 Jul; 94():120-135. PubMed ID: 31279388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strength, porosity and life cycle analysis of geopolymer and hybrid cement mortars for sustainable construction.
    Raza MH; Khan M; Zhong RY
    Sci Total Environ; 2024 Jan; 907():167839. PubMed ID: 37863214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment).
    Kim TH; Tae SH
    Int J Environ Res Public Health; 2016 Nov; 13(11):. PubMed ID: 27827843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials.
    Shehata N; Mohamed OA; Sayed ET; Abdelkareem MA; Olabi AG
    Sci Total Environ; 2022 Aug; 836():155577. PubMed ID: 35500705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A closed-loop life cycle assessment of recycled aggregate concrete utilization in China.
    Ding T; Xiao J; Tam VW
    Waste Manag; 2016 Oct; 56():367-75. PubMed ID: 27297045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitigation of waste rubber tire and waste wood ash by the production of rubberized low calcium waste wood ash based geopolymer concrete and influence of waste rubber fibre in setting properties and mechanical behavior.
    Arunkumar K; Muthukannan M; Suresh Kumar A; Chithambar Ganesh A
    Environ Res; 2021 Mar; 194():110661. PubMed ID: 33387536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical and Microstructural Investigation of Geopolymer Concrete Incorporating Recycled Waste Plastic Aggregate.
    Adeleke BO; Kinuthia JM; Oti J; Pirrie D; Power M
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Life Cycle Assessment of the Sustainability of Alkali-Activated Binders.
    Alhassan M; Alkhawaldeh A; Betoush N; Alkhawaldeh M; Huseien GF; Amaireh L; Elrefae A
    Biomimetics (Basel); 2023 Feb; 8(1):. PubMed ID: 36810389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical and durability assessments of steel slag-seashell powder-based geopolymer concrete.
    Okoro W; Oyebisi S
    Heliyon; 2023 Feb; 9(2):e13188. PubMed ID: 36793976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sustainable management and utilisation of concrete slurry waste: A case study in Hong Kong.
    Hossain MU; Xuan D; Poon CS
    Waste Manag; 2017 Mar; 61():397-404. PubMed ID: 28185853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multicriteria analysis of the environmental and economic performance of circularity strategies for concrete waste recycling in Spain.
    Alberto López Ruiz L; Roca Ramon X; Melissa Lara Mercedes C; Gasso Domingo S
    Waste Manag; 2022 May; 144():387-400. PubMed ID: 35452947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production.
    Apithanyasai S; Supakata N; Papong S
    Heliyon; 2020 Mar; 6(3):e03697. PubMed ID: 32258504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Residual Properties of Geopolymer Concrete for Post-Fire Evaluation of Structures.
    Kanagaraj B; Anand N; Andrushia D; Kodur V
    Materials (Basel); 2023 Sep; 16(17):. PubMed ID: 37687756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Geopolymers vs. Cement Matrix Materials: How Nanofiller Can Help a Sustainability Approach for Smart Construction Applications-A Review.
    Valente M; Sambucci M; Sibai A
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bond Performance of Steel Bar and Fly Ash-Based Geopolymer Concrete in Beam End Tests.
    Cui Y; Qu S; Bao J; Zhang P
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A holistic assessment of the use of emerging recycled concrete aggregates after a destructive earthquake: Mechanical, economic and environmental.
    Ulucan M; Alyamac KE
    Waste Manag; 2022 Jun; 146():53-65. PubMed ID: 35567841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Environmental performance of ordinary and new generation concrete structures-a comparative analysis.
    Wałach D; Dybeł P; Sagan J; Gicala M
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3980-3990. PubMed ID: 30552610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental Investigation on Geopolymer Concrete with Various Sustainable Mineral Ashes.
    Subash N; Avudaiappan S; Adish Kumar S; Amran M; Vatin N; Fediuk R; Aepuru R
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.