These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 3924485)

  • 1. Relationship between arterial and end-tidal CO2 tensions.
    Fletcher R
    Crit Care Med; 1985 Jul; 13(7):610-1. PubMed ID: 3924485
    [No Abstract]   [Full Text] [Related]  

  • 2. Evaluation of P a-A CO2, P A-a O2 and VD/VT measurements during controlled respiration in children. Preliminary communication.
    Grebski J
    Anaesth Resusc Intensive Ther; 1976; 4(3):159-65. PubMed ID: 797276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Position of exhalation port and mask design affect CO2 rebreathing during noninvasive positive pressure ventilation.
    Schettino GP; Chatmongkolchart S; Hess DR; Kacmarek RM
    Crit Care Med; 2003 Aug; 31(8):2178-82. PubMed ID: 12973177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Setting the frequency-tidal volume pattern.
    MacIntyre NR
    Respir Care; 2002 Mar; 47(3):266-74; discussion 274-8. PubMed ID: 11874606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients.
    Campbell RS; Davis K; Johannigman JA; Branson RD
    Respir Care; 2000 Mar; 45(3):306-12. PubMed ID: 10771799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between inspiratory pressure and tidal volume in the anesthetized canine.
    Blumenthal SR; Skoula CM; Gordon BE
    Lab Anim Sci; 1998 Feb; 48(1):69-73. PubMed ID: 9517894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of increased apparatus dead space and tidal volumes on carbon dioxide elimination and oxygen saturations in a low-flow anesthesia system.
    Enekvist BJ; Luttropp HH; Johansson A
    J Clin Anesth; 2008 May; 20(3):170-4. PubMed ID: 18502358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of high frequency positive pressure low-compression ventilation.
    Sjöstrand UH
    Int Anesthesiol Clin; 1983; 21(3):11-32. PubMed ID: 6352514
    [No Abstract]   [Full Text] [Related]  

  • 9. Clinical evaluation of high-frequency positive-pressure ventilation (HFPPV) in patients scheduled for open-chest surgery.
    Malina JR; Nordström SG; Sjöstrand UH; Wattwil LM
    Anesth Analg; 1981 May; 60(5):324-30. PubMed ID: 7013568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in end-tidal carbon dioxide and breathing patterns in ventilator-dependent patients using pressure support ventilation.
    Pierce JD; Gerald K
    Am J Crit Care; 1994 Jul; 3(4):276-81. PubMed ID: 7920956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the tidal volume and ventilatory responses to CO2 in normal man and in scoliosis.
    Kafer ER
    Bull Eur Physiopathol Respir; 1981; 17(1):1-13. PubMed ID: 6781570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of tidal volume and positive end-expiratory pressure on inspiratory gas distribution and gas exchange during mechanical ventilation in horses positioned in lateral recumbency.
    Moens Y; Lagerweij E; Gootjes P; Poortman J
    Am J Vet Res; 1998 Mar; 59(3):307-12. PubMed ID: 9522950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Respiratory training with intermittent positive pressure in acute respiratory disturbances (author's transl)].
    Neuhaus R; Lips U; Zenz M
    Anasth Intensivther Notfallmed; 1981 Aug; 16(4):203-10. PubMed ID: 6794379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing arterial and end-tidal carbon dioxide values in hyperventilated neurosurgical patients.
    Christensen MA; Bloom J; Sutton KR
    Am J Crit Care; 1995 Mar; 4(2):116-21. PubMed ID: 7749443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inspiratory time and tidal volume during intermittent positive pressure ventilation.
    Field D; Milner AD; Hopkin IE
    Arch Dis Child; 1985 Mar; 60(3):259-61. PubMed ID: 3885869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive monitoring of end-tidal CO2 via nasal cannulas in spontaneously breathing children during the perioperative period.
    Tobias JD; Flanagan JF; Wheeler TJ; Garrett JS; Burney C
    Crit Care Med; 1994 Nov; 22(11):1805-8. PubMed ID: 7956285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The use of an automatic ventilatory volume controller for the regulation of end tidal CO2].
    Yasumoto K; Inada Y
    Masui; 1984 Nov; 33(11):1236-41. PubMed ID: 6441028
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of ventilatory variables on gas exchange and hemodynamics during total liquid ventilation in a rat model.
    Matsuda K; Sawada S; Bartlett RH; Hirschl RB
    Crit Care Med; 2003 Jul; 31(7):2034-40. PubMed ID: 12847401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dead space ventilation in volume controlled versus pressure controlled mode of mechanical ventilation.
    Wathanasormsiri A; Preutthipan A; Chantarojanasiri T; Suwanjutha S
    J Med Assoc Thai; 2002 Nov; 85 Suppl 4():S1207-12. PubMed ID: 12549796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A home-made IMV-CPAP system for difficult to wean patients.
    Kiatboonsri S
    Southeast Asian J Trop Med Public Health; 1994 Dec; 25(4):638-42. PubMed ID: 7667705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.