These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 39246121)

  • 1. Angular-Inertia Regulated Stable and Nanoscale Sensing of Single Molecules Using Nanopore-In-A-Tube.
    Yang J; Pan T; Liu T; Mao C; Ho HP; Yuan W
    Adv Mater; 2024 Sep; ():e2400018. PubMed ID: 39246121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-tube micro-pyramidal silicon nanopore for inertial-kinetic sensing of single molecules.
    Yang J; Pan T; Xie Z; Yuan W; Ho HP
    Nat Commun; 2024 Jun; 15(1):5132. PubMed ID: 38879544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.
    Cao C; Long YT
    Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the sensitivity of DNA detection by structurally modified solid-state nanopore.
    Lee K; Lee H; Lee SH; Kim HM; Kim KB; Kim SJ
    Nanoscale; 2017 Nov; 9(45):18012-18021. PubMed ID: 29131223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substantial Slowing of Electrophoretic Translocation of DNA through a Nanopore Using Coherent Multiple Entropic Traps.
    Chen K; Muthukumar M
    ACS Nano; 2023 May; 17(10):9197-9208. PubMed ID: 37146154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low Noise Hybrid Nanopore with Engineered OmpG and Bilayer MoS
    Sen P; Hoi H; Gupta M
    ACS Appl Bio Mater; 2021 Jul; 4(7):5416-5424. PubMed ID: 35006727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the sensing performance of nanopore blockade sensors: A case study of prostate-specific antigen assay.
    Wu Y; Chuah K; Gooding JJ
    Biosens Bioelectron; 2020 Oct; 165():112434. PubMed ID: 32729547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-Nanopipettes for the Detection of Single Nanoparticles and Small Molecules.
    Zheng X; Liu J; Li M; Hua Y; Liang X; Zhang S; Zhang X; Shao Y
    Anal Chem; 2022 Dec; 94(50):17431-17438. PubMed ID: 36495265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-Chip Stretching, Sorting, and Electro-Optical Nanopore Sensing of Ultralong Human Genomic DNA.
    Zrehen A; Huttner D; Meller A
    ACS Nano; 2019 Dec; 13(12):14388-14398. PubMed ID: 31756076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances of small molecule detection in nanopore sensing.
    Wang R; Zhang Y; Ma QDY; Wu L
    Talanta; 2024 Sep; 277():126323. PubMed ID: 38810384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full Width at Half Maximum of Nanopore Current Blockage Controlled by a Single-Biomolecule Interface.
    Li JG; Li MY; Li XY; Wu XY; Ying YL; Long YT
    Langmuir; 2022 Jan; 38(3):1188-1193. PubMed ID: 35019652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-flexible DNA origami translocation through a solid-state nanopore.
    Yang J; Zhao N; Liang Y; Lu Z; Zhang C
    RSC Adv; 2021 Jul; 11(38):23471-23476. PubMed ID: 35479792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter.
    Akahori R; Haga T; Hatano T; Yanagi I; Ohura T; Hamamura H; Iwasaki T; Yokoi T; Anazawa T
    Nanotechnology; 2014 Jul; 25(27):275501. PubMed ID: 24960034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-State Nanopore Single-Molecule Sensing of DNAzyme Cleavage Reaction Assisted with Nucleic Acid Nanostructure.
    Zhu L; Xu Y; Ali I; Liu L; Wu H; Lu Z; Liu Q
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26555-26565. PubMed ID: 30016075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable Shrinking of Glass Capillary Nanopores Down to sub-10 nm by Wet-Chemical Silanization for Signal-Enhanced DNA Translocation.
    Xu X; Li C; Zhou Y; Jin Y
    ACS Sens; 2017 Oct; 2(10):1452-1457. PubMed ID: 28971672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Nanopore Sensors for Quantitative Analysis.
    Fried JP; Wu Y; Tilley RD; Gooding JJ
    Nano Lett; 2022 Feb; 22(3):869-880. PubMed ID: 35089719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Single-molecule electrophoresis: renewed understanding of nanopore electrochemistry].
    Zhang WW; Ying YL; Long YT
    Se Pu; 2020 Sep; 38(9):993-998. PubMed ID: 34213265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated system for optical and electrical detection of single molecules/particles inside a solid-state nanopore.
    Shi X; Gao R; Ying YL; Si W; Chen Y; Long YT
    Faraday Discuss; 2015; 184():85-99. PubMed ID: 26420730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable and reversible DNA translocation through a single-layer molybdenum disulfide nanopore.
    Si W; Zhang Y; Sha J; Chen Y
    Nanoscale; 2018 Nov; 10(41):19450-19458. PubMed ID: 30311618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.