These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A low-temperature solution-processed indium incorporated zinc oxide electron transport layer for high-efficiency lead sulfide colloidal quantum dot solar cells. Bashir R; Bilal MK; Bashir A; Zhao J; Asif SU; Ahmad W; Xie J; Hu W Nanoscale; 2021 Aug; 13(30):12991-12999. PubMed ID: 34477782 [TBL] [Abstract][Full Text] [Related]
3. Revealing oxygen effect on efficiency and stability of quantum dot photovoltaics. Chen X; Li H; Wang L; Wang Z; Liu S; Li G; Wang C; Li X; Zhu H; Wang Y; Zhang X; Liu Y J Colloid Interface Sci; 2024 Dec; 676():417-424. PubMed ID: 39033676 [TBL] [Abstract][Full Text] [Related]
4. Efficient PbSe Colloidal Quantum Dot Solar Cells Using SnO Zhu M; Liu X; Liu S; Chen C; He J; Liu W; Yang J; Gao L; Niu G; Tang J; Zhang J ACS Appl Mater Interfaces; 2020 Jan; 12(2):2566-2571. PubMed ID: 31854183 [TBL] [Abstract][Full Text] [Related]
5. Sn-Doped Zinc Oxide as an Electron Transporting Layer for Enhanced Performance in PbS Quantum Dot Solar Cells. Park M; Lim C; Lee H; Kang B; Hwang HW; Kim SK; Lee P; Kim W; Yu H; Kim T ACS Appl Mater Interfaces; 2024 Jun; 16(25):32375-32384. PubMed ID: 38869189 [TBL] [Abstract][Full Text] [Related]
6. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study. Wang H; Wang Y; He B; Li W; Sulaman M; Xu J; Yang S; Tang Y; Zou B ACS Appl Mater Interfaces; 2016 Jul; 8(28):18526-33. PubMed ID: 27176547 [TBL] [Abstract][Full Text] [Related]
7. Effective Charge Collection of Electron Transport Layers for High-Performance Quantum Dot Infrared Solar Cells. Wang M; Liu S; Wei A; Luo T; Wen X; Li MY; Lu H ACS Appl Mater Interfaces; 2024 May; 16(19):24572-24579. PubMed ID: 38690767 [TBL] [Abstract][Full Text] [Related]
8. Performance optimization of efficient PbS quantum dots solar cells through numerical simulation. Kumar S; Bharti P; Pradhan B Sci Rep; 2023 Jun; 13(1):10511. PubMed ID: 37386087 [TBL] [Abstract][Full Text] [Related]
9. Surface-Modified Graphene Oxide/Lead Sulfide Hybrid Film-Forming Ink for High-Efficiency Bulk Nano-Heterojunction Colloidal Quantum Dot Solar Cells. Zhang Y; Wu G; Ding C; Liu F; Liu D; Masuda T; Yoshino K; Hayase S; Wang R; Shen Q Nanomicro Lett; 2020 May; 12(1):111. PubMed ID: 34138103 [TBL] [Abstract][Full Text] [Related]
10. Enhancing the Efficiency and Stability of PbS Quantum Dot Solar Cells through Engineering an Ultrathin NiO Nanocrystalline Interlayer. Liu S; Hu L; Huang S; Zhang W; Ma J; Wang J; Guan X; Lin CH; Kim J; Wan T; Lei Q; Chu D; Wu T ACS Appl Mater Interfaces; 2020 Oct; 12(41):46239-46246. PubMed ID: 32929953 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of N,S-Doped Carbon Quantum Dots for Use in Organic Solar Cells as the ZnO Modifier To Eliminate the Light-Soaking Effect. Wang Y; Yan L; Ji G; Wang C; Gu H; Luo Q; Chen Q; Chen L; Yang Y; Ma CQ; Liu X ACS Appl Mater Interfaces; 2019 Jan; 11(2):2243-2253. PubMed ID: 30576120 [TBL] [Abstract][Full Text] [Related]
12. Fluoride passivation of ZnO electron transport layers for efficient PbSe colloidal quantum dot photovoltaics. He J; Ge Y; Wang Y; Yuan M; Xia H; Zhang X; Chen X; Wang X; Zhou X; Li K; Chen C; Tang J Front Optoelectron; 2023 Oct; 16(1):28. PubMed ID: 37889375 [TBL] [Abstract][Full Text] [Related]
13. Competition of Carrier Separation and Recombination for an Optimized Electrode Configuration for Flexible Thin-Film Solar Cells. Liu X; Wang S; Liu X; Zhao X; Gu Y ACS Appl Mater Interfaces; 2018 Sep; 10(38):32067-32077. PubMed ID: 30183246 [TBL] [Abstract][Full Text] [Related]
14. Reducing Interface Recombination through Mixed Nanocrystal Interlayers in PbS Quantum Dot Solar Cells. Pradhan S; Stavrinadis A; Gupta S; Konstantatos G ACS Appl Mater Interfaces; 2017 Aug; 9(33):27390-27395. PubMed ID: 28787128 [TBL] [Abstract][Full Text] [Related]
15. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide. Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107 [TBL] [Abstract][Full Text] [Related]
16. Open-Shell Diradical-Sensitized Electron Transport Layer for High-Performance Colloidal Quantum Dot Solar Cells. Fang S; Huang J; Tao R; Wei Q; Ding X; Yajima S; Chen Z; Zhu W; Liu C; Li Y; Yin N; Song L; Liu Y; Shi G; Wu H; Gao Y; Wen X; Chen Q; Shen Q; Li Y; Liu Z; Li Y; Ma W Adv Mater; 2023 May; 35(21):e2212184. PubMed ID: 36870078 [TBL] [Abstract][Full Text] [Related]
17. High-Performance Colloidal Quantum Dot Photodiodes via Suppressing Interface Defects. Lu S; Liu P; Yang J; Liu S; Yang Y; Chen L; Liu J; Liu Y; Wang B; Lan X; Zhang J; Gao L; Tang J ACS Appl Mater Interfaces; 2023 Mar; 15(9):12061-12069. PubMed ID: 36848237 [TBL] [Abstract][Full Text] [Related]
18. Role of the ZnO electron transport layer in PbS colloidal quantum dot solar cell yield. Chiu A; Lu C; Kachman DE; Rong E; Chintapalli SM; Lin Y; Khurgin D; Thon SM Nanoscale; 2024 May; 16(17):8273-8285. PubMed ID: 38592692 [TBL] [Abstract][Full Text] [Related]
19. Reducing the Open-Circuit Voltage Loss of PbS Quantum Dot Solar Cells via Hybrid Ligand Exchange Treatment. Huang T; Wu C; Yang J; Hu P; Qian L; Sun T; Xiang C ACS Appl Mater Interfaces; 2024 Jan; 16(1):915-923. PubMed ID: 38145458 [TBL] [Abstract][Full Text] [Related]
20. Matching Charge Extraction Contact for Infrared PbS Colloidal Quantum Dot Solar Cells. Li M; Chen S; Zhao X; Xiong K; Wang B; Shah UA; Gao L; Lan X; Zhang J; Hsu HY; Tang J; Song H Small; 2022 Jan; 18(1):e2105495. PubMed ID: 34859592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]