These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 39248330)

  • 1. A Photoactivatable Self-Assembled Nanoagonist for Synergistic Therapy against Pancreatic Ductal Adenocarcinoma.
    Xu X; Li T; Yang T; Liu F; Guo Z; Wu H; Tang Y; Chen H
    Nano Lett; 2024 Oct; 24(39):12239-12248. PubMed ID: 39248330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle delivery of innate immune agonists combined with senescence-inducing agents promotes T cell control of pancreatic cancer.
    Chibaya L; DeMarco KD; Lusi CF; Kane GI; Brassil ML; Parikh CN; Murphy KC; Chowdhury SR; Li J; Ma B; Naylor TE; Cerrutti J; Mori H; Diaz-Infante M; Peura J; Pitarresi JR; Zhu LJ; Fitzgerald KA; Atukorale PU; Ruscetti M
    Sci Transl Med; 2024 Aug; 16(762):eadj9366. PubMed ID: 39196958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise Photodynamic Therapy by Midkine Nanobody-Engineered Nanoparticles Remodels the Microenvironment of Pancreatic Ductal Adenocarcinoma and Potentiates the Immunotherapy.
    Qu C; Yuan H; Tian M; Zhang X; Xia P; Shi G; Hou R; Li J; Jiang H; Yang Z; Chen T; Li Z; Wang J; Yuan Y
    ACS Nano; 2024 Feb; 18(5):4019-4037. PubMed ID: 38253029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-Econazole Enhanced PD-L1 Checkpoint Blockade for Synergistic Antitumor Immunotherapy against Pancreatic Ductal Adenocarcinoma.
    Li Q; Qin S; Tian H; Liu R; Qiao L; Liu S; Li B; Yang M; Shi J; Nice EC; Li J; Lang T; Huang C
    Small; 2023 Jun; 19(23):e2207201. PubMed ID: 36899444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overcome the challenge for intratumoral injection of STING agonist for pancreatic cancer by systemic administration.
    Li K; Wang J; Zhang R; Zhou J; Espinoza B; Niu N; Wang J; Jurcak N; Rozich N; Osipov A; Henderson M; Funes V; Lyman M; Blair AB; Herbst B; He M; Yuan J; Trafton D; Yuan C; Wichroski M; Liu X; Fu J; Zheng L
    J Hematol Oncol; 2024 Aug; 17(1):62. PubMed ID: 39113096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting the tumor microenvironment for pancreatic ductal adenocarcinoma therapy.
    Zhang YF; Jiang SH; Hu LP; Huang PQ; Wang X; Li J; Zhang XL; Nie HZ; Zhang ZG
    Chin Clin Oncol; 2019 Apr; 8(2):18. PubMed ID: 31070038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma.
    Fan JQ; Wang MF; Chen HL; Shang D; Das JK; Song J
    Mol Cancer; 2020 Feb; 19(1):32. PubMed ID: 32061257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decomposable Nanoagonists Enable NIR-Elicited cGAS-STING Activation for Tandem-Amplified Photodynamic-Metalloimmunotherapy.
    Guo X; Tu P; Wang X; Du C; Jiang W; Qiu X; Wang J; Chen L; Chen Y; Ren J
    Adv Mater; 2024 May; 36(21):e2313029. PubMed ID: 38353366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD40L-armed oncolytic herpes simplex virus suppresses pancreatic ductal adenocarcinoma by facilitating the tumor microenvironment favorable to cytotoxic T cell response in the syngeneic mouse model.
    Wang R; Chen J; Wang W; Zhao Z; Wang H; Liu S; Li F; Wan Y; Yin J; Wang R; Li Y; Zhang C; Zhang H; Cao Y
    J Immunother Cancer; 2022 Jan; 10(1):. PubMed ID: 35086948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune Checkpoint Inhibition for Pancreatic Ductal Adenocarcinoma: Current Limitations and Future Options.
    Kabacaoglu D; Ciecielski KJ; Ruess DA; Algül H
    Front Immunol; 2018; 9():1878. PubMed ID: 30158932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patched 1-interacting Peptide Represses Fibrosis in Pancreatic Cancer to Augment the Effectiveness of Immunotherapy.
    Oyama Y; Onishi H; Koga S; Murahashi M; Ichimiya S; Nakayama K; Fujimura A; Kawamoto M; Imaizumi A; Umebayashi M; Ohuchida K; Morisaki T; Nakamura M
    J Immunother; 2020 May; 43(4):121-133. PubMed ID: 31834207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hollow Cu2MoS4 nanoparticles loaded with immune checkpoint inhibitors reshape the tumor microenvironment to enhance immunotherapy for pancreatic cancer.
    Yao Z; Qi C; Zhang F; Yao H; Wang C; Cao X; Zhao C; Wang Z; Qi M; Yao C; Wang X; Xia H
    Acta Biomater; 2024 Jan; 173():365-377. PubMed ID: 37890815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-pancreatic tumor efficacy of a Listeria-based, Annexin A2-targeting immunotherapy in combination with anti-PD-1 antibodies.
    Kim VM; Blair AB; Lauer P; Foley K; Che X; Soares K; Xia T; Muth ST; Kleponis J; Armstrong TD; Wolfgang CL; Jaffee EM; Brockstedt D; Zheng L
    J Immunother Cancer; 2019 May; 7(1):132. PubMed ID: 31113479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Phase Ib Study of the Combination of Personalized Autologous Dendritic Cell Vaccine, Aspirin, and Standard of Care Adjuvant Chemotherapy Followed by Nivolumab for Resected Pancreatic Adenocarcinoma-A Proof of Antigen Discovery Feasibility in Three Patients.
    Bassani-Sternberg M; Digklia A; Huber F; Wagner D; Sempoux C; Stevenson BJ; Thierry AC; Michaux J; Pak H; Racle J; Boudousquie C; Balint K; Coukos G; Gfeller D; Martin Lluesma S; Harari A; Demartines N; Kandalaft LE
    Front Immunol; 2019; 10():1832. PubMed ID: 31440238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toll-like receptor 7/8 agonist R848 alters the immune tumor microenvironment and enhances SBRT-induced antitumor efficacy in murine models of pancreatic cancer.
    Ye J; Mills BN; Qin SS; Garrett-Larsen J; Murphy JD; Uccello TP; Han BJ; Vrooman TG; Johnston CJ; Lord EM; Belt BA; Linehan DC; Gerber SA
    J Immunother Cancer; 2022 Jul; 10(7):. PubMed ID: 35851308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Immunological Glance on Pancreatic Ductal Adenocarcinoma.
    Melzer MK; Arnold F; Stifter K; Zengerling F; Azoitei N; Seufferlein T; Bolenz C; Kleger A
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32397303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Deletion of Galectin-3 Inhibits Pancreatic Cancer Progression and Enhances the Efficacy of Immunotherapy.
    Yang D; Sun X; Moniruzzaman R; Wang H; Citu C; Zhao Z; Wistuba II; Wang H; Maitra A; Chen Y
    Gastroenterology; 2024 Jul; 167(2):298-314. PubMed ID: 38467382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of STING in the pancreatic tumor microenvironment: A novel therapeutic opportunity.
    Chamma H; Vila IK; Taffoni C; Turtoi A; Laguette N
    Cancer Lett; 2022 Jul; 538():215694. PubMed ID: 35489447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoactivatable nanoagonists chemically programmed for pharmacokinetic tuning and in situ cancer vaccination.
    Wan J; Ren L; Li X; He S; Fu Y; Xu P; Meng F; Xian S; Pu K; Wang H
    Proc Natl Acad Sci U S A; 2023 Feb; 120(8):e2210385120. PubMed ID: 36787350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Formed ROS-Responsive Hydrogel with STING Agonist and Gemcitabine to Intensify Immunotherapy against Pancreatic Ductal Adenocarcinoma.
    Wang M; Hu Q; Huang J; Zhang F; Yao Z; Shao S; Zhao X; Liang T
    Adv Healthc Mater; 2023 Aug; 12(20):e2203264. PubMed ID: 36971070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.