These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 39248366)
1. Suprathreshold Water Spray Stimulus Enhances Plant Defenses against Biotic Stresses in Tomato. Liu L; Sun Z; Tang R; Shi JH; Zhang LQ; Abdelnabby H; Zhang A; Wang MQ J Agric Food Chem; 2024 Sep; 72(37):20483-20495. PubMed ID: 39248366 [TBL] [Abstract][Full Text] [Related]
2. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea. Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862 [TBL] [Abstract][Full Text] [Related]
3. Induced Plant Defenses Against Herbivory in Cultivated and Wild Tomato. Paudel S; Lin PA; Foolad MR; Ali JG; Rajotte EG; Felton GW J Chem Ecol; 2019 Aug; 45(8):693-707. PubMed ID: 31367970 [TBL] [Abstract][Full Text] [Related]
4. CRISPR/Cas9-Mediated Shu P; Li Z; Min D; Zhang X; Ai W; Li J; Zhou J; Li Z; Li F; Li X J Agric Food Chem; 2020 May; 68(20):5529-5538. PubMed ID: 32372640 [TBL] [Abstract][Full Text] [Related]
5. Induction of Jasmonic Acid-Associated Defenses by Thrips Alters Host Suitability for Conspecifics and Correlates with Increased Trichome Densities in Tomato. Escobar-Bravo R; Klinkhamer PGL; Leiss KA Plant Cell Physiol; 2017 Mar; 58(3):622-634. PubMed ID: 28158865 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive analysis of multiprotein bridging factor 1 family genes and SlMBF1c negatively regulate the resistance to Botrytis cinerea in tomato. Zhang X; Xu Z; Chen L; Ren Z BMC Plant Biol; 2019 Oct; 19(1):437. PubMed ID: 31638895 [TBL] [Abstract][Full Text] [Related]
7. Type VI glandular trichome density and their derived volatiles are differently induced by jasmonic acid in developing and fully developed tomato leaves: Implications for thrips resistance. Chen G; Klinkhamer PGL; Escobar-Bravo R; Leiss KA Plant Sci; 2018 Nov; 276():87-98. PubMed ID: 30348331 [TBL] [Abstract][Full Text] [Related]
8. Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. Worrall D; Holroyd GH; Moore JP; Glowacz M; Croft P; Taylor JE; Paul ND; Roberts MR New Phytol; 2012 Feb; 193(3):770-778. PubMed ID: 22142268 [TBL] [Abstract][Full Text] [Related]
9. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. Yan L; Zhai Q; Wei J; Li S; Wang B; Huang T; Du M; Sun J; Kang L; Li CB; Li C PLoS Genet; 2013; 9(12):e1003964. PubMed ID: 24348260 [TBL] [Abstract][Full Text] [Related]
10. Trading direct for indirect defense? Phytochrome B inactivation in tomato attenuates direct anti-herbivore defenses whilst enhancing volatile-mediated attraction of predators. Cortés LE; Weldegergis BT; Boccalandro HE; Dicke M; Ballaré CL New Phytol; 2016 Dec; 212(4):1057-1071. PubMed ID: 27689843 [TBL] [Abstract][Full Text] [Related]
11. Ultraviolet radiation enhances salicylic acid-mediated defense signaling and resistance to Pseudomonas syringae DC3000 in a jasmonic acid-deficient tomato mutant. Escobar Bravo R; Chen G; Grosser K; Van Dam NM; Leiss KA; Klinkhamer PGL Plant Signal Behav; 2019; 14(4):e1581560. PubMed ID: 30782061 [TBL] [Abstract][Full Text] [Related]
12. Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. Song YY; Ye M; Li CY; Wang RL; Wei XC; Luo SM; Zeng RS J Chem Ecol; 2013 Jul; 39(7):1036-44. PubMed ID: 23797931 [TBL] [Abstract][Full Text] [Related]
13. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Zhang S; Li X; Sun Z; Shao S; Hu L; Ye M; Zhou Y; Xia X; Yu J; Shi K J Exp Bot; 2015 Apr; 66(7):1951-63. PubMed ID: 25657213 [TBL] [Abstract][Full Text] [Related]
14. Knockout of SlMAPK3 Reduced Disease Resistance to Botrytis cinerea in Tomato Plants. Zhang S; Wang L; Zhao R; Yu W; Li R; Li Y; Sheng J; Shen L J Agric Food Chem; 2018 Aug; 66(34):8949-8956. PubMed ID: 30092129 [TBL] [Abstract][Full Text] [Related]
15. Far-red light promotes Botrytis cinerea disease development in tomato leaves via jasmonate-dependent modulation of soluble sugars. Courbier S; Grevink S; Sluijs E; Bonhomme PO; Kajala K; Van Wees SCM; Pierik R Plant Cell Environ; 2020 Nov; 43(11):2769-2781. PubMed ID: 32833234 [TBL] [Abstract][Full Text] [Related]
16. The wheat multidomain cystatin TaMDC1 displays antifungal, antibacterial, and insecticidal activities in planta. Christova PK; Christov NK; Mladenov PV; Imai R Plant Cell Rep; 2018 Jun; 37(6):923-932. PubMed ID: 29532251 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of far-red light-mediated dampening of defense against Botrytis cinerea in tomato leaves. Courbier S; Snoek BL; Kajala K; Li L; van Wees SCM; Pierik R Plant Physiol; 2021 Nov; 187(3):1250-1266. PubMed ID: 34618050 [TBL] [Abstract][Full Text] [Related]
18. Insect eggs can enhance wound response in plants: a study system of tomato Solanum lycopersicum L. and Helicoverpa zea Boddie. Kim J; Tooker JF; Luthe DS; De Moraes CM; Felton GW PLoS One; 2012; 7(5):e37420. PubMed ID: 22616005 [TBL] [Abstract][Full Text] [Related]
19. Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling. Hu Z; Shao S; Zheng C; Sun Z; Shi J; Yu J; Qi Z; Shi K Planta; 2018 May; 247(5):1217-1227. PubMed ID: 29445868 [TBL] [Abstract][Full Text] [Related]
20. Trichoderma harzianum Strain T22 Modulates Direct Defense of Tomato Plants in Response to Nezara viridula Feeding Activity. Alınç T; Cusumano A; Peri E; Torta L; Colazza S J Chem Ecol; 2021 May; 47(4-5):455-462. PubMed ID: 33713251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]