These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 39248408)

  • 1. Probing the physical origins of droplet friction using a critically damped cantilever.
    Arunachalam S; Lin M; Daniel D
    Soft Matter; 2024 Oct; 20(38):7583-7591. PubMed ID: 39248408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Friction and Wetting Transitions of Magnetic Droplets on Micropillared Superhydrophobic Surfaces.
    Al-Azawi A; Latikka M; Jokinen V; Franssila S; Ras RHA
    Small; 2017 Oct; 13(38):. PubMed ID: 28815888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet Friction on Superhydrophobic Surfaces Scales With Liquid-Solid Contact Fraction.
    Lepikko S; Turkki V; Koskinen T; Raju R; Jokinen V; Kiseleva MS; Rantataro S; Timonen JVI; Backholm M; Tittonen I; Ras RHA
    Small; 2024 Sep; ():e2405335. PubMed ID: 39286993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces.
    Zhao L; Cheng J
    Nanoscale; 2018 Apr; 10(14):6426-6436. PubMed ID: 29564459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contact line friction and dynamic contact angles of a capillary bridge between superhydrophobic nanostructured surfaces.
    Lee E; Müller-Plathe F
    J Chem Phys; 2022 Jul; 157(2):024701. PubMed ID: 35840373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How droplets pin on solid surfaces.
    Zhang J; Ding W; Hampel U
    J Colloid Interface Sci; 2023 Jun; 640():940-948. PubMed ID: 36907154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward vanishing droplet friction on repellent surfaces.
    Backholm M; Kärki T; Nurmi HA; Vuckovac M; Turkki V; Lepikko S; Jokinen V; Quéré D; Timonen JVI; Ras RHA
    Proc Natl Acad Sci U S A; 2024 Apr; 121(17):e2315214121. PubMed ID: 38621127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Friction Coefficients for Droplets on Solids: The Liquid-Solid Amontons' Laws.
    McHale G; Gao N; Wells GG; Barrio-Zhang H; Ledesma-Aguilar R
    Langmuir; 2022 Apr; 38(14):4425-4433. PubMed ID: 35353534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Friction force-based measurements for simultaneous determination of the wetting properties and stability of superhydrophobic surfaces.
    Beitollahpoor M; Farzam M; Pesika NS
    J Colloid Interface Sci; 2023 Oct; 648():161-168. PubMed ID: 37301141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping micrometer-scale wetting properties of superhydrophobic surfaces.
    Daniel D; Lay CL; Sng A; Jun Lee CJ; Jin Neo DC; Ling XY; Tomczak N
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25008-25012. PubMed ID: 31772014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact-Angle Hysteresis and Contact-Line Friction on Slippery Liquid-like Surfaces.
    Barrio-Zhang H; Ruiz-Gutiérrez É; Armstrong S; McHale G; Wells GG; Ledesma-Aguilar R
    Langmuir; 2020 Dec; 36(49):15094-15101. PubMed ID: 33258609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet Memory on Liquid-Infused Surfaces.
    Bottone D; Seeger S
    Langmuir; 2023 May; 39(17):6160-6168. PubMed ID: 37067495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water drop friction on superhydrophobic surfaces.
    Olin P; Lindström SB; Pettersson T; Wågberg L
    Langmuir; 2013 Jul; 29(29):9079-89. PubMed ID: 23721176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salvinia-Effect-Inspired "Sticky" Superhydrophobic Surfaces by Meniscus-Confined Electrodeposition.
    Zheng D; Jiang Y; Yu W; Jiang X; Zhao X; Choi CH; Sun G
    Langmuir; 2017 Nov; 33(47):13640-13648. PubMed ID: 29096056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the Structure of Hydrophobic Surfaces Using the Cassie-Baxter Equation.
    Myronyuk O; Vanagas E; Rodin AM; Wesolowski M
    Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamics-dominated wetting phenomena on hybrid superhydrophobic surfaces.
    Azimi A; Rohrs C; He P
    J Colloid Interface Sci; 2020 Mar; 562():444-452. PubMed ID: 31796211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy Loss for Droplets Bouncing Off Superhydrophobic Surfaces.
    Thenarianto C; Koh XQ; Lin M; Jokinen V; Daniel D
    Langmuir; 2023 Feb; 39(8):3162-3167. PubMed ID: 36795493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origins of Extreme Liquid Repellency on Structured, Flat, and Lubricated Hydrophobic Surfaces.
    Daniel D; Timonen JVI; Li R; Velling SJ; Kreder MJ; Tetreault A; Aizenberg J
    Phys Rev Lett; 2018 Jun; 120(24):244503. PubMed ID: 29956993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.