These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 39248526)
1. Synthesizing Lipid Nanoparticles by Turbulent Flow in Confined Impinging Jet Mixers. Subraveti SN; Wilson BK; Bizmark N; Liu J; Prud'homme RK J Vis Exp; 2024 Aug; (210):. PubMed ID: 39248526 [TBL] [Abstract][Full Text] [Related]
2. Assessment of the relative performance of a confined impinging jets mixer and a multi-inlet vortex mixer for curcumin nanoparticle production. Chow SF; Sun CC; Chow AH Eur J Pharm Biopharm; 2014 Oct; 88(2):462-71. PubMed ID: 25016977 [TBL] [Abstract][Full Text] [Related]
3. Process Robustness in Lipid Nanoparticle Production: A Comparison of Microfluidic and Turbulent Jet Mixing. O'Brien Laramy MN; Costa AP; Cebrero YM; Joseph J; Sarode A; Zang N; Kim LJ; Hofmann K; Wang S; Goyon A; Koenig SG; Hammel M; Hura GL Mol Pharm; 2023 Aug; 20(8):4285-4296. PubMed ID: 37462906 [TBL] [Abstract][Full Text] [Related]
4. A simple confined impingement jets mixer for flash nanoprecipitation. Han J; Zhu Z; Qian H; Wohl AR; Beaman CJ; Hoye TR; Macosko CW J Pharm Sci; 2012 Oct; 101(10):4018-23. PubMed ID: 22777753 [TBL] [Abstract][Full Text] [Related]
5. Size-controlled lipid nanoparticle production using turbulent mixing to enhance oral DNA delivery. He Z; Hu Y; Nie T; Tang H; Zhu J; Chen K; Liu L; Leong KW; Chen Y; Mao HQ Acta Biomater; 2018 Nov; 81():195-207. PubMed ID: 30267888 [TBL] [Abstract][Full Text] [Related]
6. Single pot organic solvent-free thermocycling technology for siRNA-ionizable LNPs: a proof-of-concept approach for alternative to microfluidics. De A; Ko YT Drug Deliv; 2022 Dec; 29(1):2644-2657. PubMed ID: 35949146 [TBL] [Abstract][Full Text] [Related]
7. Formulating and Characterizing Lipid Nanoparticles for Gene Delivery using a Microfluidic Mixing Platform. Bailey-Hytholt CM; Ghosh P; Dugas J; Zarraga IE; Bandekar A J Vis Exp; 2021 Feb; (168):. PubMed ID: 33720139 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic production of mRNA-loaded lipid nanoparticles for vaccine applications. Lopes C; Cristóvão J; Silvério V; Lino PR; Fonte P Expert Opin Drug Deliv; 2022 Oct; 19(10):1381-1395. PubMed ID: 36223174 [TBL] [Abstract][Full Text] [Related]
10. Translational formulation of nanoparticle therapeutics from laboratory discovery to clinical scale. Feng J; Markwalter CE; Tian C; Armstrong M; Prud'homme RK J Transl Med; 2019 Jun; 17(1):200. PubMed ID: 31200738 [TBL] [Abstract][Full Text] [Related]
11. Design of a Small-Scale Multi-Inlet Vortex Mixer for Scalable Nanoparticle Production and Application to the Encapsulation of Biologics by Inverse Flash NanoPrecipitation. Markwalter CE; Prud'homme RK J Pharm Sci; 2018 Sep; 107(9):2465-2471. PubMed ID: 29772223 [TBL] [Abstract][Full Text] [Related]
12. Developing Biodegradable Lipid Nanoparticles for Intracellular mRNA Delivery and Genome Editing. Qiu M; Li Y; Bloomer H; Xu Q Acc Chem Res; 2021 Nov; 54(21):4001-4011. PubMed ID: 34668716 [TBL] [Abstract][Full Text] [Related]
13. Flow physics and mixing quality in a confined impinging jet mixer. Hao Y; Seo JH; Hu Y; Mao HQ; Mittal R AIP Adv; 2020 Apr; 10(4):045105. PubMed ID: 32266109 [TBL] [Abstract][Full Text] [Related]
14. Spontaneous, solvent-free entrapment of siRNA within lipid nanoparticles. Kulkarni JA; Thomson SB; Zaifman J; Leung J; Wagner PK; Hill A; Tam YYC; Cullis PR; Petkau TL; Leavitt BR Nanoscale; 2020 Dec; 12(47):23959-23966. PubMed ID: 33241838 [TBL] [Abstract][Full Text] [Related]
15. Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles. Tao J; Chow SF; Zheng Y Acta Pharm Sin B; 2019 Jan; 9(1):4-18. PubMed ID: 30766774 [TBL] [Abstract][Full Text] [Related]
16. Impact of non-ionizable lipids and phase mixing methods on structural properties of lipid nanoparticle formulations. Pratsinis A; Fan Y; Portmann M; Hammel M; Kou P; Sarode A; Ringler P; Kovacik L; Lauer ME; Lamerz J; Hura GL; Yen CW; Keller M Int J Pharm; 2023 Apr; 637():122874. PubMed ID: 36948476 [TBL] [Abstract][Full Text] [Related]
17. A tale of nucleic acid-ionizable lipid nanoparticles: Design and manufacturing technology and advancement. De A; Ko YT Expert Opin Drug Deliv; 2023 Jan; 20(1):75-91. PubMed ID: 36445261 [TBL] [Abstract][Full Text] [Related]
18. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery. Kimura N; Maeki M; Sato Y; Ishida A; Tani H; Harashima H; Tokeshi M ACS Appl Mater Interfaces; 2020 Jul; 12(30):34011-34020. PubMed ID: 32667806 [TBL] [Abstract][Full Text] [Related]
19. Investigations into mRNA Lipid Nanoparticles Shelf-Life Stability under Nonfrozen Conditions. Reinhart AG; Osterwald A; Ringler P; Leiser Y; Lauer ME; Martin RE; Ullmer C; Schumacher F; Korn C; Keller M Mol Pharm; 2023 Dec; 20(12):6492-6503. PubMed ID: 37975733 [TBL] [Abstract][Full Text] [Related]
20. Modulating Lipid Nanoparticles with Histidinamide-Conjugated Cholesterol for Improved Intracellular Delivery of mRNA. Jung O; Jung HY; Thuy LT; Choi M; Kim S; Jeon HG; Yang J; Kim SM; Kim TD; Lee E; Kim Y; Choi JS Adv Healthc Mater; 2024 Jun; 13(14):e2303857. PubMed ID: 38344923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]