These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 39248725)
1. Exploiting the Potential of Iridium(III) Mak EC; Chen Z; Lee LC; Leung PK; Yip AM; Shum J; Yiu SM; Yam VW; Lo KK J Am Chem Soc; 2024 Sep; 146(37):25589-25599. PubMed ID: 39248725 [TBL] [Abstract][Full Text] [Related]
2. Phosphorogenic Iridium(III) bis-Tetrazine Complexes for Bioorthogonal Peptide Stapling, Bioimaging, Photocytotoxic Applications, and the Construction of Nanosized Hydrogels. Yip AM; Lai CK; Yiu KS; Lo KK Angew Chem Int Ed Engl; 2022 Apr; 61(16):e202116078. PubMed ID: 35119163 [TBL] [Abstract][Full Text] [Related]
3. Structural Manipulation of Ruthenium(II) Polypyridine Nitrone Complexes to Generate Phosphorogenic Bioorthogonal Reagents for Selective Cellular Labeling. Tang TS; Liu HW; Lo KK Chemistry; 2016 Jul; 22(28):9649-59. PubMed ID: 27273833 [TBL] [Abstract][Full Text] [Related]
4. Conferring Phosphorogenic Properties on Iridium(III)-Based Bioorthogonal Probes through Modification with a Nitrone Unit. Lee LC; Lau JC; Liu HW; Lo KK Angew Chem Int Ed Engl; 2016 Jan; 55(3):1046-9. PubMed ID: 26617258 [TBL] [Abstract][Full Text] [Related]
5. Installing an additional emission quenching pathway in the design of iridium(III)-based phosphorogenic biomaterials for bioorthogonal labelling and imaging. Li SP; Yip AM; Liu HW; Lo KK Biomaterials; 2016 Oct; 103():305-313. PubMed ID: 27429251 [TBL] [Abstract][Full Text] [Related]
6. Modulation of emission and singlet oxygen photosensitisation in live cells utilising bioorthogonal phosphorogenic probes and protein tag technology. Leung PK; Lo KK Chem Commun (Camb); 2020 Jun; 56(45):6074-6077. PubMed ID: 32352115 [TBL] [Abstract][Full Text] [Related]
7. Molecular Design of Bioorthogonal Probes and Imaging Reagents Derived from Photofunctional Transition Metal Complexes. Lo KK Acc Chem Res; 2020 Jan; 53(1):32-44. PubMed ID: 31916746 [TBL] [Abstract][Full Text] [Related]
8. Bioorthogonal Phosphorogenic Rhenium(I) Polypyridine Sydnone Complexes for Specific Lysosome Labeling. Shum J; Zhang PZ; Lee LC; Lo KK Chempluschem; 2020 Jul; 85(7):1374-1378. PubMed ID: 32207563 [TBL] [Abstract][Full Text] [Related]
9. Tuning the organelle specificity and cytotoxicity of iridium(III) photosensitisers for enhanced phototheranostic applications. Zhu JH; Xu GX; Shum J; Lee LC; Lo KK Chem Commun (Camb); 2021 Nov; 57(90):12008-12011. PubMed ID: 34709253 [TBL] [Abstract][Full Text] [Related]
10. Photophysical and Photobiological Properties of Dinuclear Iridium(III) Bis-tridentate Complexes. Liu B; Monro S; Lystrom L; Cameron CG; Colón K; Yin H; Kilina S; McFarland SA; Sun W Inorg Chem; 2018 Aug; 57(16):9859-9872. PubMed ID: 30091916 [TBL] [Abstract][Full Text] [Related]
11. Exploitation of Environment-Sensitive Luminophores in the Design of Sydnone-Based Bioorthogonal Imaging Reagents. Lee LC; Cheung HM; Liu HW; Lo KK Chemistry; 2018 Sep; 24(53):14064-14068. PubMed ID: 29989299 [TBL] [Abstract][Full Text] [Related]
12. Luminescent Rhenium(I) and Iridium(III) Polypyridine Complexes as Biological Probes, Imaging Reagents, and Photocytotoxic Agents. Lo KK Acc Chem Res; 2015 Dec; 48(12):2985-95. PubMed ID: 26161527 [TBL] [Abstract][Full Text] [Related]
13. Iridium(III) complexes as novel theranostic small molecules for medical diagnostics, precise imaging at a single cell level and targeted anticancer therapy. Szymaszek P; Tyszka-Czochara M; Ortyl J Eur J Med Chem; 2024 Oct; 276():116648. PubMed ID: 38968786 [TBL] [Abstract][Full Text] [Related]
14. Near-infrared-emitting heteroleptic cationic iridium complexes derived from 2,3-diphenylbenzo[g]quinoxaline as in vitro theranostic photodynamic therapy agents. Wang L; Yin H; Cui P; Hetu M; Wang C; Monro S; Schaller RD; Cameron CG; Liu B; Kilina S; McFarland SA; Sun W Dalton Trans; 2017 Jun; 46(25):8091-8103. PubMed ID: 28604869 [TBL] [Abstract][Full Text] [Related]
15. Insights into the anticancer photodynamic activity of Ir(III) and Ru(II) polypyridyl complexes bearing β-carboline ligands. Sanz-Villafruela J; Bermejo-Casadesus C; Zafon E; Martínez-Alonso M; Durá G; Heras A; Soriano-Díaz I; Giussani A; Ortí E; Tebar F; Espino G; Massaguer A Eur J Med Chem; 2024 Oct; 276():116618. PubMed ID: 38972079 [TBL] [Abstract][Full Text] [Related]
16. Mitochondria-targeted phosphorescent cyclometalated iridium(III) complexes: synthesis, characterization, and anticancer properties. Li Y; Liu B; Xu CX; He L; Wan YC; Ji LN; Mao ZW J Biol Inorg Chem; 2020 Jun; 25(4):597-607. PubMed ID: 32232583 [TBL] [Abstract][Full Text] [Related]
17. Fluorinated cyclometalated iridium(iii) complexes as mitochondria-targeted theranostic anticancer agents. Ouyang M; Zeng L; Huang H; Jin C; Liu J; Chen Y; Ji L; Chao H Dalton Trans; 2017 May; 46(20):6734-6744. PubMed ID: 28488721 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and photochemical properties of pH responsive tris-cyclometalated iridium(III) complexes that contain a pyridine ring on the 2-phenylpyridine ligand. Nakagawa A; Hisamatsu Y; Moromizato S; Kohno M; Aoki S Inorg Chem; 2014 Jan; 53(1):409-22. PubMed ID: 24341415 [TBL] [Abstract][Full Text] [Related]
19. Triphenylamine-appended cyclometallated iridium(III) complexes: Preparation, photophysical properties and application in biology/luminescence imaging. Liu X; Hao H; Ge X; He X; Liu Y; Wang Y; Wang H; Shao M; Jing Z; Tian L; Liu Z J Inorg Biochem; 2019 Oct; 199():110757. PubMed ID: 31445461 [TBL] [Abstract][Full Text] [Related]