BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 392504)

  • 1. Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane.
    Reider E; Wagner EF; Schweiger M
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5529-33. PubMed ID: 392504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of lactose transport by the phosphoenolpyruvate-sugar phosphotransferase system in membrane vesicles of Escherichia coli.
    Dills SS; Schmidt MR; Saier MH
    J Cell Biochem; 1982; 18(2):239-44. PubMed ID: 7040431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vinylglycolate resistance in Escherichia coli.
    Shaw L; Grau F; Kaback HR; Hong JS; Walsh C
    J Bacteriol; 1975 Mar; 121(3):1047-55. PubMed ID: 1090585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sugar phosphate:sugar transphosphorylation coupled to exchange group translocation catalyzed by the enzyme II complexes of the phosphoenolpyruvate:sugar phosphotransferase system in membrane vesicles of Escherichia coli.
    Saier MH; Cox DF; Moczydlowski EG
    J Biol Chem; 1977 Dec; 252(24):8908-16. PubMed ID: 336624
    [No Abstract]   [Full Text] [Related]  

  • 5. The role of enzyme I in the unmasking of an essential thiol of the membrane-bound enzyme II of the phosphoenolpyruvate-glucose phosphotransferase system of Escherichia coli.
    Haguenauer-Tsapis R; Kepes A
    Biochim Biophys Acta; 1977 Sep; 469(2):211-5. PubMed ID: 197996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic transport of amino acids coupled to the glycerol-3-phosphate-fumarate oxidoreductase system in a cytochrome-deficient mutant of Escherichia coli.
    Singh AP; Bragg PD
    Biochim Biophys Acta; 1976 Mar; 423(3):450-61. PubMed ID: 130924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible inactivation of vectorial phosphorylation by hydroxybutynoate in Escherichia coli membrane vesicles.
    Kaczorowski G; Kaback HR; Walsh C
    Biochemistry; 1975 Aug; 14(17):3903-8. PubMed ID: 1100101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of carbohydrate uptake and adenylate cyclase activity mediated by the enzymes II of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli.
    Saier MH; Feucht BU; Hofstadter LJ
    J Biol Chem; 1976 Feb; 251(3):883-92. PubMed ID: 765335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unmasking of an essential thiol during function of the membrane bound enzyme II of the phosphoenolpyruvate glucose phosphotransferase system of Escherichia coli.
    Haguenauer-Tsapis R; Kepes A
    Biochim Biophys Acta; 1977 Feb; 465(1):118-30. PubMed ID: 319829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugar transport. 2nducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate:sugar phosphotransferase system.
    Saier MH; Roseman S
    J Biol Chem; 1976 Nov; 251(21):6606-15. PubMed ID: 789370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of alpha-methyl glucoside in a cytochrome-deficient mutant of Escherichia coli K-12.
    Singh AP; Bragg PD
    FEBS Lett; 1976 Apr; 64(1):169-72. PubMed ID: 131708
    [No Abstract]   [Full Text] [Related]  

  • 12. Glucose catabolite repression in Escherichia coli K12 mutants defective in methyl-alpha-d-glucoside transport.
    Bourd GI; Erlagaeva RS; Bolshakova TN; Gershanovitch VN
    Eur J Biochem; 1975 May; 53(2):419-27. PubMed ID: 1095369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles.
    Barnes EM; Kaback HR
    J Biol Chem; 1971 Sep; 246(17):5518-22. PubMed ID: 4330922
    [No Abstract]   [Full Text] [Related]  

  • 14. [The alpha-methylglucoside transport in Escherichia coli K12 cells].
    Shul'gina MV; Kalacheb IIa; Burd GI
    Biokhimiia; 1977 Dec; 42(12):2235-45. PubMed ID: 339963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of sugar uptake by ascorbic acid in Escherichia coli.
    Loewen PC; Richter HE
    Arch Biochem Biophys; 1983 Oct; 226(2):657-65. PubMed ID: 6357094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli.
    Berger EA
    Proc Natl Acad Sci U S A; 1973 May; 70(5):1514-8. PubMed ID: 4268097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbohydrate uptake by Escherichia coli.
    Kornberg HL
    J Cell Physiol; 1976 Dec; 89(4):545-9. PubMed ID: 795813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose transport in Streptococcus salivarius. Evidence for the presence of a distinct phosphoenolpyruvate: glucose phosphotransferase system which catalyses the phosphorylation of alpha-methyl glucoside.
    Vadeboncoeur C; Trahan L
    Can J Microbiol; 1982 Feb; 28(2):190-9. PubMed ID: 7066764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of D-lactate-dependent transport in membrane vesicles from a D-lactate dehydrogenase mutant of Escherichia coli.
    Reeves JP; Hong JS; Kaback HR
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):1917-21. PubMed ID: 4579004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic characterization and regulation of phosphoenolpyruvate-dependent methyl alpha-D-glucopyranoside transport by Salmonella typhimurium membrane vesicles.
    Liu KD; Roseman S
    Proc Natl Acad Sci U S A; 1983 Dec; 80(23):7142-5. PubMed ID: 6359164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.