These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 39250824)

  • 41. Effect of Different Placement Sequences of Water on the Methane Adsorption Properties of Coal.
    Kang N; Chen X; Yang H; Zhao S; Qi L
    ACS Omega; 2023 Feb; 8(7):6689-6698. PubMed ID: 36844514
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Apparent Permeability Model of Coalbed Methane in Moist Coal: Coupling Gas Adsorption and Moisture Adsorption.
    Peng Z; Liu S; Deng Z; Feng H; Xiao M
    ACS Omega; 2023 Jun; 8(24):21677-21688. PubMed ID: 37360466
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanoscale Insights into CO
    Xie Z; Liang Y; Sun Q; Yu L; Wang D; Liu B
    Langmuir; 2024 Jan; 40(3):1717-1727. PubMed ID: 38206820
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simulation study on dynamic characteristics of gas diffusion in coal under nitrogen injection.
    Fang X
    Sci Rep; 2022 Nov; 12(1):18865. PubMed ID: 36344689
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Experimental Study of the Pore Structure and Gas Desorption Characteristics of a Low-Rank Coal: Impact of Moisture.
    Chen M; Chen X; Zhang X; Tian F; Sun W; Yang Y; Zhang T
    ACS Omega; 2022 Oct; 7(42):37293-37303. PubMed ID: 36312393
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calculation Model of Shale Reserves Considering the Adsorption Layer Based on Molecular Simulation.
    Sun Y; Sun R; Li S; Liu X; Tang G
    ACS Omega; 2020 Sep; 5(37):24138-24144. PubMed ID: 32984736
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of water bridge on gas adsorption and transportation mechanisms in organic shale.
    Li B; Liu Y; Lan Y; Li J; Lang Y; Rahman SS
    Sci Rep; 2024 Jul; 14(1):15008. PubMed ID: 38951644
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study for the Effect of Temperature on Methane Desorption Based on Thermodynamics and Kinetics.
    Gao Z; Ma D; Chen Y; Zheng C; Teng J
    ACS Omega; 2021 Jan; 6(1):702-714. PubMed ID: 33458523
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of the Water Content on the Adsorption of CO
    Guo D; Zhang LH; Li XG; Yang X; Zhao YL; Chen X
    Langmuir; 2024 Jan; 40(1):818-826. PubMed ID: 38146702
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of Kerogen Maturity, Water Content for Carbon Dioxide, Methane, and Their Mixture Adsorption and Diffusion in Kerogen: A Computational Investigation.
    Sui H; Zhang F; Wang Z; Wang D; Wang Y
    Langmuir; 2020 Aug; 36(33):9756-9769. PubMed ID: 32787125
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular Simulation of the Adsorption Characteristics of Methane in Pores of Coal with Different Metamorphic Degrees.
    Han Q; Deng C; Jin Z; Gao T
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885799
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular simulation of CO
    Zhou W; Wang H; Zhang Z; Chen H; Liu X
    RSC Adv; 2019 Jan; 9(6):3004-3011. PubMed ID: 35518961
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Methane Desorption-Diffusion Behaviors in Micropores of Coal under Different Water Displacement Pressures.
    Ni X; Zhang J; Han L; Liu X
    Langmuir; 2024 Oct; 40(43):23081-23093. PubMed ID: 39420639
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental Research on the Effect of Ultrasonic Waves on the Adsorption, Desorption, and Seepage Characteristics of Shale Gas.
    Li X; Zhang J; Wu C; Hong T; Zheng Y; Li C; Li B; Li R; Wang Y; Liu X; Zhao Z; Qi Q; Du X
    ACS Omega; 2021 Jul; 6(26):17002-17018. PubMed ID: 34250358
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Water adsorption characteristic and its impact on pore structure and methane adsorption of various rank coals.
    Chen MY; Chen XY; Wang L; Tian FC; Yang YM; Zhang XJ; Yang YP
    Environ Sci Pollut Res Int; 2022 Apr; 29(20):29870-29886. PubMed ID: 34993772
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of Nanoscale Accessible Pore Structures for Improved Prediction of Gas Production Potential in Chinese Marine Shales.
    Wang Y; Qin Y; Zhang R; He L; Anovitz LM; Bleuel M; Mildner DFR; Liu S; Zhu Y
    Energy Fuels; 2018; 32(12):. PubMed ID: 38846452
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Study on the Effect of Pore Structure on Desorption Hysteresis of Deep Coking Coal under High-Temperature and High-Pressure Conditions.
    Zhang Y; Wang Z; Si S; Yue J
    ACS Omega; 2024 Jan; 9(3):3709-3729. PubMed ID: 38284077
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Competitive Sorption of CO
    Liu J; Xi S; Chapman WG
    Langmuir; 2019 Jun; 35(24):8144-8158. PubMed ID: 31030516
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Determination of the absolute CH
    Zhang Y; Zhang S; Wang Z; Deng H; Qi M; Peng X; Liu Y
    RSC Adv; 2018 Dec; 8(72):41509-41516. PubMed ID: 35559325
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Experimental Study on the Methane Adsorption of Massive Shale Considering the Effective Stress and the Participation of Nanopores of Varying Sizes.
    Miao F; Wu D; Jia N; Xiao X; Sun W; Ding X; Zhai W; Chen X
    ACS Omega; 2023 May; 8(19):16935-16947. PubMed ID: 37214727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.