These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 39250851)

  • 1. The reduction of nitrobenzene by Fe(II)-goethite-hematite heterogeneous systems: Insight from thermodynamic parameters of reduction potential.
    Li X; Niu A; Yang S; Liu F
    J Environ Manage; 2024 Sep; 370():122404. PubMed ID: 39250851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear Free Energy Relationship for Predicting the Rate Constants of Munition Compound Reduction by the Fe(II)-Hematite and Fe(II)-Goethite Redox Couples.
    Cárdenas-Hernández PA; Hickey K; Di Toro DM; Allen HE; Carbonaro RF; Chiu PC
    Environ Sci Technol; 2023 Sep; 57(36):13646-13657. PubMed ID: 37610109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Reduction of nitrobenzene by iron oxides bound Fe(II) system at different pH values].
    Luan FB; Xie L; Li J; Zhou Q
    Huan Jing Ke Xue; 2009 Jul; 30(7):1937-41. PubMed ID: 19774988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abiotic reduction of nitroaromatic compounds by Fe(II) associated with iron oxides and humic acid.
    Luan F; Xie L; Li J; Zhou Q
    Chemosphere; 2013 May; 91(7):1035-41. PubMed ID: 23422171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Carbonate in Thermodynamic Relationships Describing Pollutant Reduction Kinetics by Iron Oxide-Bound Fe
    Chen G; Hofstetter TB; Gorski CA
    Environ Sci Technol; 2020 Aug; 54(16):10109-10117. PubMed ID: 32667790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facet-dependent Fe(II) redox chemistry on iron oxide for organic pollutant transformation and mechanisms.
    Hao T; Huang Y; Li F; Wu Y; Fang L
    Water Res; 2022 Jul; 219():118587. PubMed ID: 35605391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of 3-Nitro-1,2,4-Triazol-5-One (NTO) by the Hematite-Aqueous Fe(II) Redox Couple.
    Cárdenas-Hernández PA; Anderson KA; Murillo-Gelvez J; Di Toro DM; Allen HE; Carbonaro RF; Chiu PC
    Environ Sci Technol; 2020 Oct; 54(19):12191-12201. PubMed ID: 32902277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking Thermodynamics to Pollutant Reduction Kinetics by Fe
    Stewart SM; Hofstetter TB; Joshi P; Gorski CA
    Environ Sci Technol; 2018 May; 52(10):5600-5609. PubMed ID: 29595255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of surfactants on the removal of nitrobenzene by Fe(II) sorbed on goethite.
    Cao J; Huang J; Dong H; Li J; Shou J; Li Y
    J Colloid Interface Sci; 2019 Sep; 552():764-770. PubMed ID: 31176923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disentangling the size-dependent redox reactivity of iron oxides using thermodynamic relationships.
    Chen G; Thompson A; Gorski CA
    Proc Natl Acad Sci U S A; 2022 Oct; 119(40):e2204673119. PubMed ID: 36161900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural sunlight-driven oxidation of Mn
    Choi J; Choi W; Hwang H; Tang Y; Jung H
    Chemosphere; 2024 Jan; 348():140734. PubMed ID: 37977540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants.
    Elsner M; Schwarzenbach RP; Haderlein SB
    Environ Sci Technol; 2004 Feb; 38(3):799-807. PubMed ID: 14968867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)-goethite surface from AQDS speciation.
    Orsetti S; Laskov C; Haderlein SB
    Environ Sci Technol; 2013 Dec; 47(24):14161-8. PubMed ID: 24266388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferrous Iron Oxidation under Varying pO
    Chen C; Thompson A
    Environ Sci Technol; 2018 Jan; 52(2):597-606. PubMed ID: 29192502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fe(II)-mediated reduction and repartitioning of structurally incorporated Cu, Co, and Mn in iron oxides.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Oct; 46(20):11070-7. PubMed ID: 22970760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic Characterization of Iron Oxide-Aqueous Fe(2+) Redox Couples.
    Gorski CA; Edwards R; Sander M; Hofstetter TB; Stewart SM
    Environ Sci Technol; 2016 Aug; 50(16):8538-47. PubMed ID: 27427506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron(III)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32.
    Luan F; Liu Y; Griffin AM; Gorski CA; Burgos WD
    Environ Sci Technol; 2015 Feb; 49(3):1418-26. PubMed ID: 25565314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides.
    Jeon BH; Dempsey BA; Burgos WD
    Environ Sci Technol; 2003 Aug; 37(15):3309-15. PubMed ID: 12966975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidences on As(III) and As(V) interaction with iron(III) oxides: Hematite and goethite.
    Ajith N; Satpati AK; Debnath AK; Swain KK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(9):1007-1018. PubMed ID: 34387542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of a Dimethoxyhydroquinone by Ferrihydrite and Goethite Nanoparticles: Iron Reduction versus Surface Catalysis.
    Krumina L; Lyngsie G; Tunlid A; Persson P
    Environ Sci Technol; 2017 Aug; 51(16):9053-9061. PubMed ID: 28691796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.