These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 39250851)

  • 21. Chemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxides.
    Jeon BH; Dempsey BA; Burgos WD; Barnett MO; Roden EE
    Environ Sci Technol; 2005 Aug; 39(15):5642-9. PubMed ID: 16124298
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sustaining reactivity of Fe(0) for nitrate reduction via electron transfer between dissolved Fe(2+) and surface iron oxides.
    Han L; yang L; Wang H; Hu X; Chen Z; Hu C
    J Hazard Mater; 2016 May; 308():208-15. PubMed ID: 26835898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.
    Bassez MP
    Orig Life Evol Biosph; 2017 Dec; 47(4):453-480. PubMed ID: 28361301
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface.
    Williams AG; Scherer MM
    Environ Sci Technol; 2004 Sep; 38(18):4782-90. PubMed ID: 15487788
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mediated Electrochemical Reduction of Iron (Oxyhydr-)Oxides under Defined Thermodynamic Boundary Conditions.
    Aeppli M; Voegelin A; Gorski CA; Hofstetter TB; Sander M
    Environ Sci Technol; 2018 Jan; 52(2):560-570. PubMed ID: 29200267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anoxic oxidation of As(III) during Fe(II)-induced goethite recrystallization: Evidence and importance of Fe(IV) intermediate.
    Hua J; Fei YH; Feng C; Liu C; Liang S; Wang SL; Wu F
    J Hazard Mater; 2022 Jan; 421():126806. PubMed ID: 34388930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In-situ mobilization and transformation of iron oxides-adsorbed arsenate in natural groundwater.
    Zhang D; Guo H; Xiu W; Ni P; Zheng H; Wei C
    J Hazard Mater; 2017 Jan; 321():228-237. PubMed ID: 27631685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controls on Fe(II)-activated trace element release from goethite and hematite.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Feb; 46(3):1519-26. PubMed ID: 22185654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of aqueous Fe(II) on arsenate sorption on goethite and hematite.
    Catalano JG; Luo Y; Otemuyiwa B
    Environ Sci Technol; 2011 Oct; 45(20):8826-33. PubMed ID: 21899306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of biological reductive dissolution of hematite by ferrous iron.
    Royer RA; Dempsey BA; Jeon BH; Burgos WD
    Environ Sci Technol; 2004 Jan; 38(1):187-93. PubMed ID: 14740735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanogoethite formation from oxidation of Fe(II) sorbed on aluminum oxide: implications for contaminant reduction.
    Larese-Casanova P; Cwiertny DM; Scherer MM
    Environ Sci Technol; 2010 May; 44(10):3765-71. PubMed ID: 20408543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Abiotic subsurface behaviors of As(V) with Fe(II).
    Lee SH; Jung W; Jeon BH; Choi JY; Kim S
    Environ Geochem Health; 2011 Jan; 33 Suppl 1():13-22. PubMed ID: 21046429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iron oxide surface-catalyzed oxidation of ferrous iron by monochloramine: implications of oxide type and carbonate on reactivity.
    Vikesland PJ; Valentine RL
    Environ Sci Technol; 2002 Feb; 36(3):512-9. PubMed ID: 11871569
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of Oxalate on Ni Fate during Fe(II)-Catalyzed Recrystallization of Hematite and Goethite.
    Flynn ED; Catalano JG
    Environ Sci Technol; 2018 Jun; 52(12):6920-6927. PubMed ID: 29806459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting laterite redox potential with iron activity and electron transfer term.
    Ji Y; Xu J; Zhu L
    Chemosphere; 2023 Jul; 328():138519. PubMed ID: 36972875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduction of nitrosobenzenes and N-hydroxylanilines by Fe(II) species: elucidation of the reaction mechanism.
    Colón D; Weber EJ; Anderson JL; Winget P; Suárez LA
    Environ Sci Technol; 2006 Jul; 40(14):4449-54. PubMed ID: 16903284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights into phenanthrene attenuation by hydroxyl radicals from reduced iron-bearing mineral oxygenation.
    Wang L; Du H; Xu H; Li H; Li L
    J Hazard Mater; 2022 Oct; 439():129658. PubMed ID: 35901635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of iron (hydr)oxide mineralogy and contents in aquifer sediments on dissolved organic carbon attenuations during aquifer storage and recovery.
    Anggraini TM; An S; Kim SH; Kwon MJ; Chung J; Lee S
    Chemosphere; 2024 Mar; 351():141196. PubMed ID: 38218241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reductive transformations of dichloroacetamide safeners: effects of agrochemical co-formulants and iron oxide + manganese oxide binary-mineral systems.
    Ricko AN; Psoras AW; Sivey JD
    Environ Sci Process Impacts; 2020 Oct; 22(10):2104-2116. PubMed ID: 32959852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Redox Potentials of Magnetite Suspensions under Reducing Conditions.
    Robinson TC; Latta DE; Leddy J; Scherer MM
    Environ Sci Technol; 2022 Dec; 56(23):17454-17461. PubMed ID: 36394877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.