These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 39251002)
1. Construction of ion/electron transfer multi-channels for the composite film electrode from GO and cellulose derived porous carbon in supercapacitor. Tian W; Ren P; Hou X; Wang F; Fan B; Wang Y; Chen Z; Ren F; Song P; Guo Z; Jin Y Int J Biol Macromol; 2024 Nov; 279(Pt 3):135462. PubMed ID: 39251002 [TBL] [Abstract][Full Text] [Related]
2. Cellulose nanofiber-based hybrid hydrogel electrode with superhydrophilicity enabling flexible high energy density supercapacitor and multifunctional sensors. Wu Q; Jiang C; Zhao Y; Li Y; Yu S; Huang L Int J Biol Macromol; 2024 Sep; 276(Pt 2):134003. PubMed ID: 39032900 [TBL] [Abstract][Full Text] [Related]
4. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors. Sarker AK; Hong JD Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750 [TBL] [Abstract][Full Text] [Related]
5. Intertwined carbon networks derived from Polyimide/Cellulose composite as porous electrode for symmetrical supercapacitor. Li H; Cao L; Zhang H; Tian Z; Zhang Q; Yang F; Yang H; He S; Jiang S J Colloid Interface Sci; 2022 Mar; 609():179-187. PubMed ID: 34894552 [TBL] [Abstract][Full Text] [Related]
6. Hierarchical porous carbons from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid for supercapacitor. Shu Y; Bai Q; Fu G; Xiong Q; Li C; Ding H; Shen Y; Uyama H Carbohydr Polym; 2020 Jan; 227():115346. PubMed ID: 31590873 [TBL] [Abstract][Full Text] [Related]
7. Porous carboxymethyl cellulose carbon of lignocellulosic based materials incorporated manganese oxide for supercapacitor application. Ali MSM; Zainal Z; Hussein MZ; Wahid MH; Bahrudin NN; Muzakir MM; Jalil R Int J Biol Macromol; 2021 Jun; 180():654-666. PubMed ID: 33722623 [TBL] [Abstract][Full Text] [Related]
8. Porous mesocarbon microbeads with graphitic shells: constructing a high-rate, high-capacity cathode for hybrid supercapacitor. Lei Y; Huang ZH; Yang Y; Shen W; Zheng Y; Sun H; Kang F Sci Rep; 2013; 3():2477. PubMed ID: 23963328 [TBL] [Abstract][Full Text] [Related]
9. High capacitive performance of flexible and binder-free graphene-polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly. Zhang J; Chen P; Oh BH; Chan-Park MB Nanoscale; 2013 Oct; 5(20):9860-6. PubMed ID: 23974163 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and Performance of Self-Supported Flexible Cellulose Nanofibrils/Reduced Graphene Oxide Supercapacitor Electrode Materials. He W; Wu B; Lu M; Li Z; Qiang H Molecules; 2020 Jun; 25(12):. PubMed ID: 32560428 [TBL] [Abstract][Full Text] [Related]
12. 3D CNTs/graphene network conductive substrate supported MOFs-derived CoZnNiS nanosheet arrays for ultra-high volumetric/gravimetric energy density hybrid supercapacitor. Liu Y; Xin N; Yang Q; Shi W J Colloid Interface Sci; 2021 Feb; 583():288-298. PubMed ID: 33007585 [TBL] [Abstract][Full Text] [Related]
13. Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance. Ma L; Liu R; Niu H; Xing L; Liu L; Huang Y ACS Appl Mater Interfaces; 2016 Dec; 8(49):33608-33618. PubMed ID: 27960422 [TBL] [Abstract][Full Text] [Related]
14. Nano-porous architecture of N-doped carbon nanorods grown on graphene to enable synergetic effects of supercapacitance. Fan HS; Wang H; Zhao N; Xu J; Pan F Sci Rep; 2014 Dec; 4():7426. PubMed ID: 25519206 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications. Zhang W; Xu J; Hou D; Yin J; Liu D; He Y; Lin H J Colloid Interface Sci; 2018 Nov; 530():338-344. PubMed ID: 29982026 [TBL] [Abstract][Full Text] [Related]
16. All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance. Ogata C; Kurogi R; Awaya K; Hatakeyama K; Taniguchi T; Koinuma M; Matsumoto Y ACS Appl Mater Interfaces; 2017 Aug; 9(31):26151-26160. PubMed ID: 28715632 [TBL] [Abstract][Full Text] [Related]
17. Reduced graphene oxide/cellulose nanocrystal composite films with high specific capacitance and tensile strength. Ding Z; Tang Y; Zhu P Int J Biol Macromol; 2022 Mar; 200():574-582. PubMed ID: 35077747 [TBL] [Abstract][Full Text] [Related]
18. Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances. Naderi L; Shahrokhian S J Colloid Interface Sci; 2019 Apr; 542():325-338. PubMed ID: 30763900 [TBL] [Abstract][Full Text] [Related]
19. Lignocellulose-based free-standing hybrid electrode with natural vessels-retained, hierarchically pores-constructed and active materials-loaded for high-performance hybrid oxide supercapacitor. Luo M; Yang K; Zhang D; Liu C; Yang P; Chen W; Zhou X Int J Biol Macromol; 2021 Sep; 187():903-910. PubMed ID: 34343583 [TBL] [Abstract][Full Text] [Related]
20. Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode. Lee M; Kim GP; Don Song H; Park S; Yi J Nanotechnology; 2014 Aug; 25(34):345601. PubMed ID: 25092115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]