These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 39251042)
1. Prediction of chemical-induced acute toxicity using in vitro assay data and chemical structure. Luo X; Xu T; Ngan DK; Xia M; Zhao J; Sakamuru S; Simeonov A; Huang R Toxicol Appl Pharmacol; 2024 Nov; 492():117098. PubMed ID: 39251042 [TBL] [Abstract][Full Text] [Related]
2. Prediction of drug-induced liver injury and cardiotoxicity using chemical structure and in vitro assay data. Ye L; Ngan DK; Xu T; Liu Z; Zhao J; Sakamuru S; Zhang L; Zhao T; Xia M; Simeonov A; Huang R Toxicol Appl Pharmacol; 2022 Nov; 454():116250. PubMed ID: 36150479 [TBL] [Abstract][Full Text] [Related]
3. Predictive Models for Human Organ Toxicity Based on Xu T; Ngan DK; Ye L; Xia M; Xie HQ; Zhao B; Simeonov A; Huang R Chem Res Toxicol; 2020 Mar; 33(3):731-741. PubMed ID: 32077278 [TBL] [Abstract][Full Text] [Related]
4. Bioactivity Signatures of Drugs vs. Environmental Chemicals Revealed by Tox21 High-Throughput Screening Assays. Ngan DK; Ye L; Wu L; Xia M; Rossoshek A; Simeonov A; Huang R Front Big Data; 2019; 2():50. PubMed ID: 33693373 [TBL] [Abstract][Full Text] [Related]
8. Application of ToxCast/Tox21 data for toxicity mechanism-based evaluation and prioritization of environmental chemicals: Perspective and limitations. Jeong J; Kim D; Choi J Toxicol In Vitro; 2022 Oct; 84():105451. PubMed ID: 35921976 [TBL] [Abstract][Full Text] [Related]
9. Tox21-Based Comparative Analyses for the Identification of Potential Toxic Effects of Environmental Pollutants. Yang R; Liu S; Yin N; Zhang Y; Faiola F Environ Sci Technol; 2022 Oct; 56(20):14668-14679. PubMed ID: 36178254 [TBL] [Abstract][Full Text] [Related]
10. A Data Analysis Pipeline Accounting for Artifacts in Tox21 Quantitative High-Throughput Screening Assays. Hsieh JH; Sedykh A; Huang R; Xia M; Tice RR J Biomol Screen; 2015 Aug; 20(7):887-97. PubMed ID: 25904095 [TBL] [Abstract][Full Text] [Related]
11. Identification of environmental chemicals that activate p53 signaling after in vitro metabolic activation. Ooka M; Zhao J; Shah P; Travers J; Klumpp-Thomas C; Xu X; Huang R; Ferguson S; Witt KL; Smith-Roe SL; Simeonov A; Xia M Arch Toxicol; 2022 Jul; 96(7):1975-1987. PubMed ID: 35435491 [TBL] [Abstract][Full Text] [Related]
12. Use of Wei Z; Xu T; Strickland J; Zhang L; Fang Y; Tao D; Simeonov A; Huang R; Kleinstreuer NC; Xia M Front Toxicol; 2024; 6():1321857. PubMed ID: 38482198 [No Abstract] [Full Text] [Related]
13. Tox21 Enricher: Web-based Chemical/Biological Functional Annotation Analysis Tool Based on Tox21 Toxicity Screening Platform. Hur J; Danes L; Hsieh JH; McGregor B; Krout D; Auerbach S Mol Inform; 2018 May; 37(5):e1700129. PubMed ID: 29377626 [TBL] [Abstract][Full Text] [Related]
14. Cell-Based High-Throughput Screening for Aromatase Inhibitors in the Tox21 10K Library. Chen S; Hsieh JH; Huang R; Sakamuru S; Hsin LY; Xia M; Shockley KR; Auerbach S; Kanaya N; Lu H; Svoboda D; Witt KL; Merrick BA; Teng CT; Tice RR Toxicol Sci; 2015 Oct; 147(2):446-57. PubMed ID: 26141389 [TBL] [Abstract][Full Text] [Related]
15. Leveraging heterogeneous data from GHS toxicity annotations, molecular and protein target descriptors and Tox21 assay readouts to predict and rationalise acute toxicity. Allen CHG; Mervin LH; Mahmoud SY; Bender A J Cheminform; 2019 May; 11(1):36. PubMed ID: 31152262 [TBL] [Abstract][Full Text] [Related]
16. ADMET Evaluation in Drug Discovery. Part 17: Development of Quantitative and Qualitative Prediction Models for Chemical-Induced Respiratory Toxicity. Lei T; Chen F; Liu H; Sun H; Kang Y; Li D; Li Y; Hou T Mol Pharm; 2017 Jul; 14(7):2407-2421. PubMed ID: 28595388 [TBL] [Abstract][Full Text] [Related]
17. High-Throughput Chemical Screening and Structure-Based Models to Predict hERG Inhibition. Krishna S; Borrel A; Huang R; Zhao J; Xia M; Kleinstreuer N Biology (Basel); 2022 Jan; 11(2):. PubMed ID: 35205076 [TBL] [Abstract][Full Text] [Related]
18. Evaluating the utility of a high throughput thiol-containing fluorescent probe to screen for reactivity: A case study with the Tox21 library. Patlewicz G; Paul-Friedman K; Houck K; Zhang L; Huang R; Xia M; Brown J; Simmons SO Comput Toxicol; 2023 May; 26():. PubMed ID: 37388277 [TBL] [Abstract][Full Text] [Related]
19. Identifying Protein Features and Pathways Responsible for Toxicity Using Machine Learning and Tox21: Implications for Predictive Toxicology. Moukheiber L; Mangione W; Moukheiber M; Maleki S; Falls Z; Gao M; Samudrala R Molecules; 2022 May; 27(9):. PubMed ID: 35566372 [TBL] [Abstract][Full Text] [Related]
20. The US Federal Tox21 Program: A strategic and operational plan for continued leadership. Thomas RS; Paules RS; Simeonov A; Fitzpatrick SC; Crofton KM; Casey WM; Mendrick DL ALTEX; 2018; 35(2):163-168. PubMed ID: 29529324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]