These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 392512)

  • 1. Immunocytochemical localization, in synapses, of protein I, an endogenous substrate for protein kinases in mammalian brain.
    Bloom FE; Ueda T; Battenberg E; Greengard P
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5982-6. PubMed ID: 392512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Widespread distribution of protein I in the central and peripheral nervous systems.
    De Camilli P; Ueda T; Bloom FE; Battenberg E; Greengard P
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5977-81. PubMed ID: 392511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunocytochemical characterization of neuron-rich primary cultures of embryonic rat brain cells by established neuronal and glial markers and by monospecific antisera against cyclic nucleotide-dependent protein kinases and the synaptic vesicle protein synapsin I.
    Löffner F; Lohmann SM; Walckhoff B; Walter U; Hamprecht B
    Brain Res; 1986 Jan; 363(2):205-21. PubMed ID: 3080203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presynaptic localization of phosphoprotein B-50.
    Sorensen RG; Kleine LP; Mahler HR
    Brain Res Bull; 1981 Jul; 7(1):57-61. PubMed ID: 6456038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multidisciplinary approaches for characterizing synaptic vesicle proteins.
    Leenders M; Gerwin C; Sheng ZH
    Curr Protoc Neurosci; 2004 Sep; Chapter 2():Unit 2.7. PubMed ID: 18428598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization in mammalian brain of G-substrate, a specific substrate for guanosine 3',5'-cyclic monophosphate-dependent protein kinase.
    Detre JA; Nairn AC; Aswad DW; Greengard P
    J Neurosci; 1984 Nov; 4(11):2843-9. PubMed ID: 6094745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ontogeny of synaptic phosphoproteins in brain.
    Lohmann SM; Ueda T; Greengard P
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):4037-41. PubMed ID: 211513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Affinity-purified anti-protein I antibody. Specific inhibitor of phosphorylation of protein I, a synaptic protein.
    Naito S; Ueda T
    J Biol Chem; 1981 Oct; 256(20):10657-63. PubMed ID: 6793584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic GMP-dependent protein phosphorylation in mammalian brain.
    Nairn AC; Greengard P
    Fed Proc; 1983 Nov; 42(14):3107-13. PubMed ID: 6313433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology, isopycnic density and lipid content of synaptic complexes isolated from developing cerebellums and different brain regions.
    Kornguth SE; Flangas AL; Geison RL; Scott G
    Brain Res; 1972 Feb; 37(1):53-68. PubMed ID: 4110605
    [No Abstract]   [Full Text] [Related]  

  • 11. Piccolo, a novel 420 kDa protein associated with the presynaptic cytomatrix.
    Cases-Langhoff C; Voss B; Garner AM; Appeltauer U; Takei K; Kindler S; Veh RW; De Camilli P; Gundelfinger ED; Garner CC
    Eur J Cell Biol; 1996 Mar; 69(3):214-23. PubMed ID: 8900486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of synaptic-membrane proteins from ox cerebral cortex in vitro. Partition of substrates and protein kinase activities with triton X-100.
    Dunkley PR; Holmes H; Rodnight R
    Biochem J; 1976 Sep; 157(3):661-6. PubMed ID: 186029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of the pannexin1 protein at postsynaptic sites in the cerebral cortex and hippocampus.
    Zoidl G; Petrasch-Parwez E; Ray A; Meier C; Bunse S; Habbes HW; Dahl G; Dermietzel R
    Neuroscience; 2007 Apr; 146(1):9-16. PubMed ID: 17379420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of the growth cone specific epitope CDA 1 and the synaptic vesicle protein SVP38 in the developing mammalian cerebral cortex.
    Devoto SH; Barnstable CJ
    J Comp Neurol; 1989 Dec; 290(1):154-68. PubMed ID: 2480369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The presence and functions of calmodulin in the postsynaptic density.
    Grab DJ; Carlin RK; Siekevitz P
    Ann N Y Acad Sci; 1980; 356():55-72. PubMed ID: 6263164
    [No Abstract]   [Full Text] [Related]  

  • 16. Specific inhibition of the phosphorylation of protein I, a synaptic protein, by affinity-purified anti-protein I antibody.
    Ueda T; Naito S
    Prog Brain Res; 1982; 56():87-103. PubMed ID: 6819594
    [No Abstract]   [Full Text] [Related]  

  • 17. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus.
    Tang SJ; Reis G; Kang H; Gingras AC; Sonenberg N; Schuman EM
    Proc Natl Acad Sci U S A; 2002 Jan; 99(1):467-72. PubMed ID: 11756682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of Ca2+-dependent neurotransmitter release and presynaptic nerve terminal protein phosphorylation by calmodulin and a calmodulin-like protein isolated from synaptic vesicles.
    DeLorenzo RJ; Freedman SD; Yohe WB; Maurer SC
    Proc Natl Acad Sci U S A; 1979 Apr; 76(4):1838-42. PubMed ID: 287024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular distribution in cerebral cortex of two proteins phosphorylated by a cAMP-dependent protein kinase.
    Ueda T; Greengard P; Berzins K; Cohen RS; Blomberg F; Grab DJ; Siekevitz P
    J Cell Biol; 1979 Nov; 83(2 Pt 1):308-19. PubMed ID: 227912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perinatal exposure to lead (Pb) induces ultrastructural and molecular alterations in synapses of rat offspring.
    Gąssowska M; Baranowska-Bosiacka I; Moczydłowska J; Frontczak-Baniewicz M; Gewartowska M; Strużyńska L; Gutowska I; Chlubek D; Adamczyk A
    Toxicology; 2016 Dec; 373():13-29. PubMed ID: 27974193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.