These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 39251962)
1. Machine learning-based prognostic model for 30-day mortality prediction in Sepsis-3. Rahman MS; Islam KR; Prithula J; Kumar J; Mahmud M; Alam MF; Reaz MBI; Alqahtani A; Chowdhury MEH BMC Med Inform Decis Mak; 2024 Sep; 24(1):249. PubMed ID: 39251962 [TBL] [Abstract][Full Text] [Related]
2. Prediction of sepsis mortality in ICU patients using machine learning methods. Gao J; Lu Y; Ashrafi N; Domingo I; Alaei K; Pishgar M BMC Med Inform Decis Mak; 2024 Aug; 24(1):228. PubMed ID: 39152423 [TBL] [Abstract][Full Text] [Related]
3. Predicting sepsis in-hospital mortality with machine learning: a multi-center study using clinical and inflammatory biomarkers. Zhang G; Shao F; Yuan W; Wu J; Qi X; Gao J; Shao R; Tang Z; Wang T Eur J Med Res; 2024 Mar; 29(1):156. PubMed ID: 38448999 [TBL] [Abstract][Full Text] [Related]
4. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation. Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962 [TBL] [Abstract][Full Text] [Related]
5. [Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning]. Zhu M; Hu C; He Y; Qian Y; Tang S; Hu Q; Hao C Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jul; 35(7):696-701. PubMed ID: 37545445 [TBL] [Abstract][Full Text] [Related]
6. Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach. Fan Z; Jiang J; Xiao C; Chen Y; Xia Q; Wang J; Fang M; Wu Z; Chen F J Transl Med; 2023 Jun; 21(1):406. PubMed ID: 37349774 [TBL] [Abstract][Full Text] [Related]
7. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms]. Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626 [TBL] [Abstract][Full Text] [Related]
8. An interpretable machine learning model for predicting 28-day mortality in patients with sepsis-associated liver injury. Wen C; Zhang X; Li Y; Xiao W; Hu Q; Lei X; Xu T; Liang S; Gao X; Zhang C; Yu Z; Lü M PLoS One; 2024; 19(5):e0303469. PubMed ID: 38768153 [TBL] [Abstract][Full Text] [Related]
9. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. Kong G; Lin K; Hu Y BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381 [TBL] [Abstract][Full Text] [Related]
10. A novel higher performance nomogram based on explainable machine learning for predicting mortality risk in stroke patients within 30 days based on clinical features on the first day ICU admission. Chen H; Yang F; Duan Y; Yang L; Li J BMC Med Inform Decis Mak; 2024 Jun; 24(1):161. PubMed ID: 38849903 [TBL] [Abstract][Full Text] [Related]
11. An intelligent warning model for early prediction of cardiac arrest in sepsis patients. Layeghian Javan S; Sepehri MM; Layeghian Javan M; Khatibi T Comput Methods Programs Biomed; 2019 Sep; 178():47-58. PubMed ID: 31416562 [TBL] [Abstract][Full Text] [Related]
12. Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree. Li K; Shi Q; Liu S; Xie Y; Liu J Medicine (Baltimore); 2021 May; 100(19):e25813. PubMed ID: 34106618 [TBL] [Abstract][Full Text] [Related]
13. Prediction of 30-day mortality for ICU patients with Sepsis-3. Yu Z; Ashrafi N; Li H; Alaei K; Pishgar M BMC Med Inform Decis Mak; 2024 Aug; 24(1):223. PubMed ID: 39118128 [TBL] [Abstract][Full Text] [Related]
14. Explainable ensemble machine learning model for prediction of 28-day mortality risk in patients with sepsis-associated acute kidney injury. Yang J; Peng H; Luo Y; Zhu T; Xie L Front Med (Lausanne); 2023; 10():1165129. PubMed ID: 37275353 [TBL] [Abstract][Full Text] [Related]
15. A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study. Wang J; Chen H; Wang H; Liu W; Peng D; Zhao Q; Xiao M J Med Internet Res; 2023 Apr; 25():e43815. PubMed ID: 37023416 [TBL] [Abstract][Full Text] [Related]
17. Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit. Huang T; Le D; Yuan L; Xu S; Peng X PLoS One; 2023; 18(1):e0280606. PubMed ID: 36701342 [TBL] [Abstract][Full Text] [Related]
18. Machine learning models predict triage levels, massive transfusion protocol activation, and mortality in trauma utilizing patients hemodynamics on admission. El-Menyar A; Naduvilekandy M; Asim M; Rizoli S; Al-Thani H Comput Biol Med; 2024 Sep; 179():108880. PubMed ID: 39018880 [TBL] [Abstract][Full Text] [Related]
19. Prognostic Assessment of COVID-19 in the Intensive Care Unit by Machine Learning Methods: Model Development and Validation. Pan P; Li Y; Xiao Y; Han B; Su L; Su M; Li Y; Zhang S; Jiang D; Chen X; Zhou F; Ma L; Bao P; Xie L J Med Internet Res; 2020 Nov; 22(11):e23128. PubMed ID: 33035175 [TBL] [Abstract][Full Text] [Related]
20. Early sepsis mortality prediction model based on interpretable machine learning approach: development and validation study. Wang Y; Gao Z; Zhang Y; Lu Z; Sun F Intern Emerg Med; 2024 Aug; ():. PubMed ID: 39141286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]