These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Efficient production of Antrodin C by microparticle-enhanced cultivation of medicinal mushroom Antrodia cinnamomea. Fan JH; Lai KS; Huang YY; Chen HY; Xiong LQ; Guo HK; Yang QQ; Zhang BB J Biosci Bioeng; 2023 Mar; 135(3):232-237. PubMed ID: 36693775 [TBL] [Abstract][Full Text] [Related]
4. Co-cultivation of filamentous microorganisms in the presence of aluminum oxide microparticles. Boruta T; Antecka A Appl Microbiol Biotechnol; 2022 Sep; 106(17):5459-5477. PubMed ID: 35906994 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Oxytetracycline Production by Boruta T; Ścigaczewska A Molecules; 2021 Oct; 26(19):. PubMed ID: 34641580 [TBL] [Abstract][Full Text] [Related]
6. Morphological evolution of various fungal species in the presence and absence of aluminum oxide microparticles: Comparative and quantitative insights into microparticle-enhanced cultivation (MPEC). Kowalska A; Boruta T; Bizukojć M Microbiologyopen; 2018 Oct; 7(5):e00603. PubMed ID: 29504287 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of schizophyllan production in Schizophyllum commune using microparticles in medium. Alizadeh V; Shojaosadati SA; Zamir SM Bioprocess Biosyst Eng; 2021 Feb; 44(2):317-328. PubMed ID: 32955618 [TBL] [Abstract][Full Text] [Related]
8. Morphology engineering for novel antibiotics: Effect of glass microparticles and soy lecithin on rebeccamycin production and cellular morphology of filamentous actinomycete Dinius A; Schrinner K; Schrader M; Kozanecka ZJ; Brauns H; Klose L; Weiß H; Kwade A; Krull R Front Bioeng Biotechnol; 2023; 11():1171055. PubMed ID: 37091334 [No Abstract] [Full Text] [Related]
9. Microparticles enhance the formation of seven major classes of natural products in native and metabolically engineered actinobacteria through accelerated morphological development. Kuhl M; Rückert C; Gläser L; Beganovic S; Luzhetskyy A; Kalinowski J; Wittmann C Biotechnol Bioeng; 2021 Aug; 118(8):3076-3093. PubMed ID: 33974270 [TBL] [Abstract][Full Text] [Related]
10. Inulinolytic activity of broths of Kowalska A; Antecka A; Owczarz P; Bizukojć M Eng Life Sci; 2017 Sep; 17(9):1006-1020. PubMed ID: 32624851 [TBL] [Abstract][Full Text] [Related]
11. Microparticles globally reprogram Streptomyces albus toward accelerated morphogenesis, streamlined carbon core metabolism, and enhanced production of the antituberculosis polyketide pamamycin. Kuhl M; Gläser L; Rebets Y; Rückert C; Sarkar N; Hartsch T; Kalinowski J; Luzhetskyy A; Wittmann C Biotechnol Bioeng; 2020 Dec; 117(12):3858-3875. PubMed ID: 32808679 [TBL] [Abstract][Full Text] [Related]
12. [Optimization and application of chemically defined medium for 13C metabolic flux analysis of Streptomyces rimosus M4018]. Wang L; Zhao H; Yu L; Guo M; Chu J; Zhang S Sheng Wu Gong Cheng Xue Bao; 2014 Apr; 30(4):679-83. PubMed ID: 25195258 [TBL] [Abstract][Full Text] [Related]
13. Improved mycelia and polysaccharide production of Grifola frondosa by controlling morphology with microparticle Talc. Tao TL; Cui FJ; Chen XX; Sun WJ; Huang DM; Zhang J; Yang Y; Wu D; Liu WM Microb Cell Fact; 2018 Jan; 17(1):1. PubMed ID: 29306327 [TBL] [Abstract][Full Text] [Related]
14. Effects of the Coculture Initiation Method on the Production of Secondary Metabolites in Bioreactor Cocultures of Boruta T; Ścigaczewska A; Ruda A; Bizukojć M Molecules; 2023 Aug; 28(16):. PubMed ID: 37630296 [TBL] [Abstract][Full Text] [Related]
15. The repertoire and levels of secondary metabolites in microbial cocultures depend on the inoculation ratio: a case study involving Aspergillus terreus and Streptomyces rimosus. Boruta T; Englart G; Foryś M; Pawlikowska W Biotechnol Lett; 2024 Aug; 46(4):601-614. PubMed ID: 38844646 [TBL] [Abstract][Full Text] [Related]
16. Morphology engineering of basidiomycetes for improved laccase biosynthesis. Antecka A; Blatkiewicz M; Bizukojć M; Ledakowicz S Biotechnol Lett; 2016 Apr; 38(4):667-72. PubMed ID: 26699894 [TBL] [Abstract][Full Text] [Related]
17. Kinetic model to describe the morphological evolution of filamentous fungi during their early stages of growth in the standard submerged and microparticle-enhanced cultivations. Kowalska A; Boruta T; Bizukojc M Eng Life Sci; 2019 Aug; 19(8):557-574. PubMed ID: 32625032 [TBL] [Abstract][Full Text] [Related]
18. Improving 2-phenylethanol and 6-pentyl-α-pyrone production with fungi by microparticle-enhanced cultivation (MPEC). Etschmann MM; Huth I; Walisko R; Schuster J; Krull R; Holtmann D; Wittmann C; Schrader J Yeast; 2015 Jan; 32(1):145-57. PubMed ID: 24910400 [TBL] [Abstract][Full Text] [Related]
19. Optimization of the cultivation medium for natamycin production by Streptomyces natalensis. Farid MA; el-Enshasy HA; el-Diwany AI; el-Sayed el-S A J Basic Microbiol; 2000; 40(3):157-66. PubMed ID: 10957957 [TBL] [Abstract][Full Text] [Related]
20. Morphogenesis, biomass and oxytetracycline production of Streptomyces rimosus in submerged cultivation. Wang JY; Yang SS Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi; 1995 Feb; 28(1):21-31. PubMed ID: 9774981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]