These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 39252586)
21. Climate change is predicted to disrupt patterns of local adaptation in wild and cultivated maize. Aguirre-Liguori JA; Ramírez-Barahona S; Tiffin P; Eguiarte LE Proc Biol Sci; 2019 Jul; 286(1906):20190486. PubMed ID: 31290364 [TBL] [Abstract][Full Text] [Related]
22. Phylogenomic Analysis of the Plastid Genome of the Peruvian Purple Maize Montenegro JD; Julca I; Chumbe-Nolasco LD; Rodríguez-Pérez LM; Sevilla Panizo R; Medina-Hoyos A; Gutiérrez-Reynoso DL; Guerrero-Abad JC; Amasifuen Guerra CA; García-Serquén AL Plants (Basel); 2022 Oct; 11(20):. PubMed ID: 36297753 [TBL] [Abstract][Full Text] [Related]
23. Root volatile profiles and herbivore preference are mediated by maize domestication, geographic spread, and modern breeding. Bernal JS; Helms AM; Fontes-Puebla AA; DeWitt TJ; Kolomiets MV; Grunseich JM Planta; 2022 Dec; 257(1):24. PubMed ID: 36562877 [TBL] [Abstract][Full Text] [Related]
24. Contemporary evolution of maize landraces and their wild relatives influenced by gene flow with modern maize varieties. Rojas-Barrera IC; Wegier A; Sánchez González JJ; Owens GL; Rieseberg LH; Piñero D Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21302-21311. PubMed ID: 31570572 [TBL] [Abstract][Full Text] [Related]
25. Archaeological Central American maize genomes suggest ancient gene flow from South America. Kistler L; Thakar HB; VanDerwarker AM; Domic A; Bergström A; George RJ; Harper TK; Allaby RG; Hirth K; Kennett DJ Proc Natl Acad Sci U S A; 2020 Dec; 117(52):33124-33129. PubMed ID: 33318213 [TBL] [Abstract][Full Text] [Related]
26. The potential role of genetic assimilation during maize domestication. Lorant A; Pedersen S; Holst I; Hufford MB; Winter K; Piperno D; Ross-Ibarra J PLoS One; 2017; 12(9):e0184202. PubMed ID: 28886108 [TBL] [Abstract][Full Text] [Related]
27. Two teosintes made modern maize. Yang N; Wang Y; Liu X; Jin M; Vallebueno-Estrada M; Calfee E; Chen L; Dilkes BP; Gui S; Fan X; Harper TK; Kennett DJ; Li W; Lu Y; Ding J; Chen Z; Luo J; Mambakkam S; Menon M; Snodgrass S; Veller C; Wu S; Wu S; Zhuo L; Xiao Y; Yang X; Stitzer MC; Runcie D; Yan J; Ross-Ibarra J Science; 2023 Dec; 382(6674):eadg8940. PubMed ID: 38033071 [TBL] [Abstract][Full Text] [Related]
28. Characterization of the teosinte transcriptome reveals adaptive sequence divergence during maize domestication. Huang J; Gao Y; Jia H; Zhang Z Mol Ecol Resour; 2016 Nov; 16(6):1465-1477. PubMed ID: 26990495 [TBL] [Abstract][Full Text] [Related]
29. Facilitated by nature and agriculture: performance of a specialist herbivore improves with host-plant life history evolution, domestication, and breeding. Dávila-Flores AM; DeWitt TJ; Bernal JS Oecologia; 2013 Dec; 173(4):1425-37. PubMed ID: 23868032 [TBL] [Abstract][Full Text] [Related]
30. Speciation and domestication in maize and its wild relatives: evidence from the globulin-1 gene. Hilton H; Gaut BS Genetics; 1998 Oct; 150(2):863-72. PubMed ID: 9755214 [TBL] [Abstract][Full Text] [Related]
31. Genetic diversity and population structure of native maize populations in Latin America and the Caribbean. Bedoya CA; Dreisigacker S; Hearne S; Franco J; Mir C; Prasanna BM; Taba S; Charcosset A; Warburton ML PLoS One; 2017; 12(4):e0173488. PubMed ID: 28403177 [TBL] [Abstract][Full Text] [Related]
32. Evolutionary Metabolomics Identifies Substantial Metabolic Divergence between Maize and Its Wild Ancestor, Teosinte. Xu G; Cao J; Wang X; Chen Q; Jin W; Li Z; Tian F Plant Cell; 2019 Sep; 31(9):1990-2009. PubMed ID: 31227559 [TBL] [Abstract][Full Text] [Related]
33. Genetic signals of origin, spread, and introgression in a large sample of maize landraces. van Heerwaarden J; Doebley J; Briggs WH; Glaubitz JC; Goodman MM; de Jesus Sanchez Gonzalez J; Ross-Ibarra J Proc Natl Acad Sci U S A; 2011 Jan; 108(3):1088-92. PubMed ID: 21189301 [TBL] [Abstract][Full Text] [Related]
34. The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement. Liu J; Fernie AR; Yan J Plant Commun; 2020 Jan; 1(1):100010. PubMed ID: 33404535 [TBL] [Abstract][Full Text] [Related]
35. Teosinte Pollen Drive guides maize diversification and domestication by RNAi. Berube B; Ernst E; Cahn J; Roche B; de Santis Alves C; Lynn J; Scheben A; Grimanelli D; Siepel A; Ross-Ibarra J; Kermicle J; Martienssen RA Nature; 2024 Sep; 633(8029):380-388. PubMed ID: 39112710 [TBL] [Abstract][Full Text] [Related]
36. Increased seminal root number associated with domestication improves nitrogen and phosphorus acquisition in maize seedlings. Perkins AC; Lynch JP Ann Bot; 2021 Sep; 128(4):453-468. PubMed ID: 34120166 [TBL] [Abstract][Full Text] [Related]
37. Genomic variation in recently collected maize landraces from Mexico. Arteaga MC; Moreno-Letelier A; Mastretta-Yanes A; Vázquez-Lobo A; Breña-Ochoa A; Moreno-Estrada A; Eguiarte LE; Piñero D Genom Data; 2016 Mar; 7():38-45. PubMed ID: 26981357 [TBL] [Abstract][Full Text] [Related]