These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 39252957)
1. Friendly fungi: Tropical insect families form partnerships with intracellular fungi related to pathogens. Siehl R; Vyhnal K; Goffredi SK iScience; 2024 Sep; 27(9):110674. PubMed ID: 39252957 [TBL] [Abstract][Full Text] [Related]
2. Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea). Urban JM; Cryan JR BMC Evol Biol; 2012 Jun; 12():87. PubMed ID: 22697166 [TBL] [Abstract][Full Text] [Related]
3. Variable organization of symbiont-containing tissue across planthoppers hosting different heritable endosymbionts. Michalik A; Franco DC; Deng J; Szklarzewicz T; Stroiński A; Kobiałka M; Łukasik P Front Physiol; 2023; 14():1135346. PubMed ID: 37035661 [TBL] [Abstract][Full Text] [Related]
4. Genome Comparison Reveals Inversions and Alternative Evolutionary History of Nutritional Endosymbionts in Planthoppers (Hemiptera: Fulgoromorpha). Deng J; Bennett GM; Franco DC; Prus-Frankowska M; Stroiński A; Michalik A; Łukasik P Genome Biol Evol; 2023 Jul; 15(7):. PubMed ID: 37392458 [TBL] [Abstract][Full Text] [Related]
5. Genomic Comparisons Reveal Selection Pressure and Functional Variation Between Nutritional Endosymbionts of Cave-Adapted and Epigean Hawaiian Planthoppers. Gossett JM; Porter ML; Vasquez YM; Bennett GM; Chong RA Genome Biol Evol; 2023 Mar; 15(3):. PubMed ID: 36864565 [TBL] [Abstract][Full Text] [Related]
6. Facultatively intrabacterial localization of a planthopper endosymbiont as an adaptation to its vertical transmission. Michalik A; C Franco D; Szklarzewicz T; Stroiński A; Łukasik P mSystems; 2024 Jul; 9(7):e0063424. PubMed ID: 38934538 [TBL] [Abstract][Full Text] [Related]
7. Alternative Transmission Patterns in Independently Acquired Nutritional Cosymbionts of Dictyopharidae Planthoppers. Michalik A; Castillo Franco D; Kobiałka M; Szklarzewicz T; Stroiński A; Łukasik P mBio; 2021 Aug; 12(4):e0122821. PubMed ID: 34465022 [TBL] [Abstract][Full Text] [Related]
8. Comparative genomics of a quadripartite symbiosis in a planthopper host reveals the origins and rearranged nutritional responsibilities of anciently diverged bacterial lineages. Bennett GM; Mao M Environ Microbiol; 2018 Dec; 20(12):4461-4472. PubMed ID: 30047196 [TBL] [Abstract][Full Text] [Related]
9. Recurrent symbiont recruitment from fungal parasites in cicadas. Matsuura Y; Moriyama M; Łukasik P; Vanderpool D; Tanahashi M; Meng XY; McCutcheon JP; Fukatsu T Proc Natl Acad Sci U S A; 2018 Jun; 115(26):E5970-E5979. PubMed ID: 29891654 [TBL] [Abstract][Full Text] [Related]
10. Dynamic Acquisition and Loss of Dual-Obligate Symbionts in the Plant-Sap-Feeding Adelgidae (Hemiptera: Sternorrhyncha: Aphidoidea). von Dohlen CD; Spaulding U; Patch KB; Weglarz KM; Foottit RG; Havill NP; Burke GR Front Microbiol; 2017; 8():1037. PubMed ID: 28659877 [TBL] [Abstract][Full Text] [Related]
11. Symbiont-mediated functions in insect hosts. Su Q; Zhou X; Zhang Y Commun Integr Biol; 2013 May; 6(3):e23804. PubMed ID: 23710278 [TBL] [Abstract][Full Text] [Related]
12. Segregation of endosymbionts in complex symbiotic system of cicadas providing novel insights into microbial symbioses and evolutionary dynamics of symbiotic organs in sap-feeding insects. Huang Z; Wang D; Zhou J; He H; Wei C Front Zool; 2024 Jun; 21(1):15. PubMed ID: 38863001 [TBL] [Abstract][Full Text] [Related]
13. Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a Phloem-feeding insect. Bennett GM; Moran NA Genome Biol Evol; 2013; 5(9):1675-88. PubMed ID: 23918810 [TBL] [Abstract][Full Text] [Related]
14. Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage. Koga R; Bennett GM; Cryan JR; Moran NA Environ Microbiol; 2013 Jul; 15(7):2073-81. PubMed ID: 23574391 [TBL] [Abstract][Full Text] [Related]
15. A Study on Symbiotic Systems of Cicadas Provides New Insights into Distribution of Microbial Symbionts and Improves Fluorescence In Situ Hybridization Technique. Huang Z; Zhou J; Zhang Z; He H; Wei C Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768757 [TBL] [Abstract][Full Text] [Related]
16. Distribution, Vertical Transmission, and Cooperative Mechanisms of Obligate Symbiotic Bacteria in the Leafhopper Wu W; Lei JN; Mao Q; Tian YZ; Shan HW; Chen JP Insects; 2023 Aug; 14(8):. PubMed ID: 37623420 [TBL] [Abstract][Full Text] [Related]
17. Coevolution of Metabolic Pathways in Blattodea and Their Kinjo Y; Bourguignon T; Hongoh Y; Lo N; Tokuda G; Ohkuma M Microbiol Spectr; 2022 Oct; 10(5):e0277922. PubMed ID: 36094208 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional reconstruction of a whole insect reveals its phloem sap-sucking mechanism at nano-resolution. Wang XQ; Guo JS; Li DT; Yu Y; Hagoort J; Moussian B; Zhang CX Elife; 2021 Feb; 10():. PubMed ID: 33620311 [TBL] [Abstract][Full Text] [Related]
19. Characterization and evolution of two bacteriome-inhabiting symbionts in cixiid planthoppers (Hemiptera: Fulgoromorpha: Pentastirini). Bressan A; Arneodo J; Simonato M; Haines WP; Boudon-Padieu E Environ Microbiol; 2009 Dec; 11(12):3265-79. PubMed ID: 19758348 [TBL] [Abstract][Full Text] [Related]
20. Transovarial Transmission of Bacteriome-Associated Symbionts in the Cicada Huang Z; Wang D; Li J; Wei C; He H Appl Environ Microbiol; 2020 Jun; 86(12):. PubMed ID: 32276978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]