BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 3925391)

  • 1. Maintenance of the integrity of the blood-brain barrier in the rat during an in situ saline-based perfusion.
    Greenwood J; Luthert PJ; Pratt OE; Lantos PL
    Neurosci Lett; 1985 May; 56(2):223-7. PubMed ID: 3925391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of a low pH saline perfusate upon the integrity of the energy-depleted rat blood-brain barrier.
    Greenwood J; Hazell AS; Luthert PJ
    J Cereb Blood Flow Metab; 1989 Apr; 9(2):234-42. PubMed ID: 2921298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of a metabolic inhibitor upon the properties of the cerebral vasculature during a whole-head saline perfusion of the rat.
    Luthert PJ; Greenwood J; Pratt OE; Lantos PL
    Q J Exp Physiol; 1987 Jan; 72(1):129-41. PubMed ID: 3104983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of bile salts on the permeability and ultrastructure of the perfused, energy-depleted, rat blood-brain barrier.
    Greenwood J; Adu J; Davey AJ; Abbott NJ; Bradbury MW
    J Cereb Blood Flow Metab; 1991 Jul; 11(4):644-54. PubMed ID: 2050752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of thiamin across the blood-brain barrier of the rat in the absence of aerobic metabolism.
    Greenwood J; Luthert PJ; Pratt OE; Lantos PL
    Brain Res; 1986 Dec; 399(1):148-51. PubMed ID: 3801916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fracture faces of cell junctions in cerebral endothelium during normal and hyperosmotic conditions.
    Nagy Z; Peters H; Hüttner I
    Lab Invest; 1984 Mar; 50(3):313-22. PubMed ID: 6422163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperosmolar opening of the blood-brain barrier in the energy-depleted rat brain. Part 1. Permeability studies.
    Greenwood J; Luthert PJ; Pratt OE; Lantos PL
    J Cereb Blood Flow Metab; 1988 Feb; 8(1):9-15. PubMed ID: 3123500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective closure of the vascular bed of an experimental glioma model during in situ saline perfusion.
    Luthert PJ; Greenwood J
    Neuropathol Appl Neurobiol; 1994 Oct; 20(5):448-53. PubMed ID: 7845530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permeability of the developing blood-brain barrier to 14C-mannitol using the rat in situ brain perfusion technique.
    Preston JE; al-Sarraf H; Segal MB
    Brain Res Dev Brain Res; 1995 Jun; 87(1):69-76. PubMed ID: 7554234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opening of blood-brain barrier in Triturus cristatus carnifex by hyperosmolar mannitol solutions.
    Franceschini V; Ciani F; Lazzari M; Del Grande P; Minelli G
    Basic Appl Histochem; 1988; 32(3):327-32. PubMed ID: 3147653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of solute transport across the blood-brain barrier in the perfused guinea pig brain: method and application to N-methyl-alpha-aminoisobutyric acid.
    Zloković BV; Begley DJ; Djuricić BM; Mitrovic DM
    J Neurochem; 1986 May; 46(5):1444-51. PubMed ID: 3083044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood-brain barrier permeability to bilirubin in the rat studied using intracarotid bolus injection and in situ brain perfusion techniques.
    Ives NK; Gardiner RM
    Pediatr Res; 1990 May; 27(5):436-41. PubMed ID: 2345669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of sugars into microvessels isolated from rat brain: a model for the blood-brain barrier.
    Kolber AR; Bagnell CR; Krigman MR; Hayward J; Morell P
    J Neurochem; 1979 Aug; 33(2):419-31. PubMed ID: 469532
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of chronic salt intake on the capillaries in the cerebral cortex of spontaneously hypertensive rats (SHRs): an ultrastructural study.
    Singh DN; Jeria MJ
    Exp Pathol; 1983; 23(1):45-52. PubMed ID: 6840255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic studies of mammalian cells by 31P-NMR using a continuous perfusion technique.
    Knop RH; Chen CW; Mitchell JB; Russo A; McPherson S; Cohen JS
    Biochim Biophys Acta; 1984 Jul; 804(3):275-84. PubMed ID: 6743691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of intracarotid hyperosmolar mannitol in triethyl tin (TET)-induced rat brain edema--preservation of blood-brain barrier (BBB) in TET edema.
    Inoue T; Nagara H; Kondo A; Fukui M; Tateishi J
    Brain Res; 1987 Jun; 414(2):309-13. PubMed ID: 3113663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A modified method for measurement of radiotracer permeation across the rat blood--brain barrier: the problem of correcting brain uptake for intravascular tracer.
    Preston E; Allen M; Haas N
    J Neurosci Methods; 1983 Sep; 9(1):45-55. PubMed ID: 6415348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracarotid hypothermic saline infusion: a new method for reversible blood-brain barrier disruption in anesthetized rats.
    Oztaş B; Küçük M
    Neurosci Lett; 1995 May; 190(3):203-6. PubMed ID: 7637893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adrenergic-induced enhancement of brain barrier system permeability to small nonelectrolytes: choroid plexus versus cerebral capillaries.
    Murphy VA; Johanson CE
    J Cereb Blood Flow Metab; 1985 Sep; 5(3):401-12. PubMed ID: 3928638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of capillary permeability of inulin, sucrose and mannitol in rat brain cortex.
    Amtorp O
    Acta Physiol Scand; 1980 Dec; 110(4):337-42. PubMed ID: 6786001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.