These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39253960)
21. A matter of quantity: Common features in the drought response of transgenic plants overexpressing HD-Zip I transcription factors. Romani F; Ribone PA; Capella M; Miguel VN; Chan RL Plant Sci; 2016 Oct; 251():139-154. PubMed ID: 27593472 [TBL] [Abstract][Full Text] [Related]
22. Overexpression of OsTF1L, a rice HD-Zip transcription factor, promotes lignin biosynthesis and stomatal closure that improves drought tolerance. Bang SW; Lee DK; Jung H; Chung PJ; Kim YS; Choi YD; Suh JW; Kim JK Plant Biotechnol J; 2019 Jan; 17(1):118-131. PubMed ID: 29781573 [TBL] [Abstract][Full Text] [Related]
23. Identification of TCP family in moso bamboo (Phyllostachys edulis) and salt tolerance analysis of PheTCP9 in transgenic Arabidopsis. Xu Y; Wang L; Liu H; He W; Jiang N; Wu M; Xiang Y Planta; 2022 Jun; 256(1):5. PubMed ID: 35670871 [TBL] [Abstract][Full Text] [Related]
24. Transcriptome Analysis of Moso Bamboo ( Huang Z; Zhu P; Zhong X; Qiu J; Xu W; Song L Front Plant Sci; 2022; 13():960302. PubMed ID: 35928710 [TBL] [Abstract][Full Text] [Related]
25. Genome-Wide Characterization and Gene Expression Analyses of GATA Transcription Factors in Moso Bamboo ( Wang T; Yang Y; Lou S; Wei W; Zhao Z; Ren Y; Lin C; Ma L Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31861396 [TBL] [Abstract][Full Text] [Related]
26. Whole-Genome and Expression Analyses of Bamboo Aquaporin Genes Reveal Their Functions Involved in Maintaining Diurnal Water Balance in Bamboo Shoots. Sun H; Wang S; Lou Y; Zhu C; Zhao H; Li Y; Li X; Gao Z Cells; 2018 Nov; 7(11):. PubMed ID: 30400256 [TBL] [Abstract][Full Text] [Related]
27. Comprehensive genome-wide analysis of the DREB gene family in Moso bamboo (Phyllostachys edulis): evidence for the role of PeDREB28 in plant abiotic stress response. Hu X; Liang J; Wang W; Cai C; Ye S; Wang N; Han F; Wu Y; Zhu Q Plant J; 2023 Dec; 116(5):1248-1270. PubMed ID: 37566437 [TBL] [Abstract][Full Text] [Related]
28. Genome-Wide analysis of the AAAP gene family in moso bamboo (Phyllostachys edulis). Liu H; Wu M; Zhu D; Pan F; Wang Y; Wang Y; Xiang Y BMC Plant Biol; 2017 Jan; 17(1):29. PubMed ID: 28143411 [TBL] [Abstract][Full Text] [Related]
29. The moso bamboo drought-induced 19 protein PheDi19-8 functions oppositely to its interacting partner, PheCDPK22, to modulate drought stress tolerance. Wu M; Liu H; Gao Y; Shi Y; Pan F; Xiang Y Plant Sci; 2020 Oct; 299():110605. PubMed ID: 32900443 [TBL] [Abstract][Full Text] [Related]
30. Comparative genomic analysis of the CPK gene family in Moso bamboo (Phyllostachys edulis) and the functions of PheCPK1 in drought stress. Wu M; Liu H; Wang L; Zhang X; He W; Xiang Y Protoplasma; 2023 Jan; 260(1):171-187. PubMed ID: 35503386 [TBL] [Abstract][Full Text] [Related]
31. Genome-wide identification and expression characterization of the DoG gene family of moso bamboo (Phyllostachys edulis). Zhijun Z; Peiyao Y; Bing H; Ruifang M; Vinod KK; Ramakrishnan M BMC Genomics; 2022 May; 23(1):357. PubMed ID: 35538420 [TBL] [Abstract][Full Text] [Related]
32. Metabolic profiles of moso bamboo in response to drought stress in a field investigation. Tong R; Zhou B; Cao Y; Ge X; Jiang L Sci Total Environ; 2020 Jun; 720():137722. PubMed ID: 32325609 [TBL] [Abstract][Full Text] [Related]
33. Genome-Wide Identification and Expression Analyses of the bZIP Transcription Factor Genes in moso bamboo ( Pan F; Wu M; Hu W; Liu R; Yan H; Xiang Y Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31060272 [TBL] [Abstract][Full Text] [Related]
34. Transcriptome profiling reveals the crucial biological pathways involved in cold response in Moso bamboo (Phyllostachys edulis). Liu Y; Wu C; Hu X; Gao H; Wang Y; Luo H; Cai S; Li G; Zheng Y; Lin C; Zhu Q Tree Physiol; 2020 Apr; 40(4):538-556. PubMed ID: 31860727 [TBL] [Abstract][Full Text] [Related]
35. A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Agalou A; Purwantomo S; Overnäs E; Johannesson H; Zhu X; Estiati A; de Kam RJ; Engström P; Slamet-Loedin IH; Zhu Z; Wang M; Xiong L; Meijer AH; Ouwerkerk PB Plant Mol Biol; 2008 Jan; 66(1-2):87-103. PubMed ID: 17999151 [TBL] [Abstract][Full Text] [Related]
36. A Moso Bamboo Drought-Induced 19 Protein, PeDi19-4, Enhanced Drought and Salt Tolerance in Plants via the ABA-Dependent Signaling Pathway. Wu M; Cai R; Liu H; Li F; Zhao Y; Xiang Y Plant Cell Physiol; 2019 Jul; 60(7):e1-e14. PubMed ID: 30452736 [TBL] [Abstract][Full Text] [Related]
37. Characterization of moso bamboo (Phyllostachys edulis) Dof transcription factors in floral development and abiotic stress responses. Cheng Z; Hou D; Liu J; Li X; Xie L; Ma Y; Gao J Genome; 2018 Mar; 61(3):151-156. PubMed ID: 29338359 [TBL] [Abstract][Full Text] [Related]
38. Molecular interactions of the γ-clade homeodomain-leucine zipper class I transcription factors during the wheat response to water deficit. Harris JC; Sornaraj P; Taylor M; Bazanova N; Baumann U; Lovell B; Langridge P; Lopato S; Hrmova M Plant Mol Biol; 2016 Mar; 90(4-5):435-52. PubMed ID: 26803501 [TBL] [Abstract][Full Text] [Related]
39. The miR166-mRNA network regulates vascular tissue differentiation in Moso bamboo. Li Y; Zhang S; Zhang D; Li X; Gao Z; Jiang Z Front Genet; 2022; 13():893956. PubMed ID: 36035181 [TBL] [Abstract][Full Text] [Related]