These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 39254002)
21. T Hu H; Chen L; Zhang JL; Chen W; Chen HH; Liu H; Shi HB; Wu FY; Xu XQ J Magn Reson Imaging; 2022 Sep; 56(3):862-872. PubMed ID: 35092642 [TBL] [Abstract][Full Text] [Related]
22. Predictive value of magnetic resonance imaging radiomics-based machine learning for disease progression in patients with high-grade glioma. Li Z; Chen L; Song Y; Dai G; Duan L; Luo Y; Wang G; Xiao Q; Li G; Bai S Quant Imaging Med Surg; 2023 Jan; 13(1):224-236. PubMed ID: 36620140 [TBL] [Abstract][Full Text] [Related]
23. Development of an MRI-Based Comprehensive Model Fusing Clinical, Radiomics and Deep Learning Models for Preoperative Histological Stratification in Intracranial Solitary Fibrous Tumor. Liang X; Tang K; Ke X; Jiang J; Li S; Xue C; Deng J; Liu X; Yan C; Gao M; Zhou J; Zhao L J Magn Reson Imaging; 2024 Aug; 60(2):523-533. PubMed ID: 37897302 [TBL] [Abstract][Full Text] [Related]
24. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features. Ren Y; Zhang X; Rui W; Pang H; Qiu T; Wang J; Xie Q; Jin T; Zhang H; Chen H; Zhang Y; Lu H; Yao Z; Zhang J; Feng X J Magn Reson Imaging; 2019 Mar; 49(3):808-817. PubMed ID: 30194745 [TBL] [Abstract][Full Text] [Related]
25. Preoperative MRI-Based Radiomic Machine-Learning Nomogram May Accurately Distinguish Between Benign and Malignant Soft-Tissue Lesions: A Two-Center Study. Wang H; Zhang J; Bao S; Liu J; Hou F; Huang Y; Chen H; Duan S; Hao D; Liu J J Magn Reson Imaging; 2020 Sep; 52(3):873-882. PubMed ID: 32112598 [TBL] [Abstract][Full Text] [Related]
26. A fully automatic multiparametric radiomics model for differentiation of adult pilocytic astrocytomas from high-grade gliomas. Park YW; Eom J; Kim D; Ahn SS; Kim EH; Kang SG; Chang JH; Kim SH; Lee SK Eur Radiol; 2022 Jul; 32(7):4500-4509. PubMed ID: 35141780 [TBL] [Abstract][Full Text] [Related]
27. Using machine learning-based radiomics to differentiate between glioma and solitary brain metastasis from lung cancer and its subtypes. Zhu FY; Sun YF; Yin XP; Zhang Y; Xing LH; Ma ZP; Xue LY; Wang JN Discov Oncol; 2023 Dec; 14(1):224. PubMed ID: 38055122 [TBL] [Abstract][Full Text] [Related]
28. Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study. Hamerla G; Meyer HJ; Schob S; Ginat DT; Altman A; Lim T; Gihr GA; Horvath-Rizea D; Hoffmann KT; Surov A Magn Reson Imaging; 2019 Nov; 63():244-249. PubMed ID: 31425811 [TBL] [Abstract][Full Text] [Related]
29. An Integrated Radiomics Model Incorporating Diffusion-Weighted Imaging and Zhang L; Yao R; Gao J; Tan D; Yang X; Wen M; Wang J; Xie X; Liao R; Tang Y; Chen S; Li Y Front Oncol; 2021; 11():732704. PubMed ID: 34527594 [TBL] [Abstract][Full Text] [Related]
30. Magnetic Resonance Imaging Radiomics-Based Machine Learning Prediction of Clinically Significant Prostate Cancer in Equivocal PI-RADS 3 Lesions. Hectors SJ; Chen C; Chen J; Wang J; Gordon S; Yu M; Al Hussein Al Awamlh B; Sabuncu MR; Margolis DJA; Hu JC J Magn Reson Imaging; 2021 Nov; 54(5):1466-1473. PubMed ID: 33970516 [TBL] [Abstract][Full Text] [Related]
31. Developing a Radiomics Signature for Supratentorial Extra-Ventricular Ependymoma Using Multimodal MR Imaging. Safai A; Shinde S; Jadhav M; Chougule T; Indoria A; Kumar M; Santosh V; Jabeen S; Beniwal M; Konar S; Saini J; Ingalhalikar M Front Neurol; 2021; 12():648092. PubMed ID: 34367044 [No Abstract] [Full Text] [Related]
32. Comparison of MRI Sequences to Predict Kasap DNG; Mora NGN; Blömer DA; Akkurt BH; Heindel WL; Mannil M; Musigmann M Biomedicines; 2024 Mar; 12(4):. PubMed ID: 38672080 [TBL] [Abstract][Full Text] [Related]
33. Preoperative Evaluation of Gd-EOB-DTPA-Enhanced MRI Radiomics-Based Nomogram in Small Solitary Hepatocellular Carcinoma (≤3 cm) With Microvascular Invasion: A Two-Center Study. Tian Y; Hua H; Peng Q; Zhang Z; Wang X; Han J; Ma W; Chen J J Magn Reson Imaging; 2022 Nov; 56(5):1459-1472. PubMed ID: 35298849 [TBL] [Abstract][Full Text] [Related]
34. Preoperative MRI-Based Radiomics of Brain Metastasis to Assess T790M Resistance Mutation After EGFR-TKI Treatment in NSCLC. Fan Y; He L; Yang H; Wang Y; Su J; Hou S; Luo Y; Jiang X J Magn Reson Imaging; 2023 Jun; 57(6):1778-1787. PubMed ID: 36165534 [TBL] [Abstract][Full Text] [Related]
35. Intratumoral and Peritumoral Edema Radiomics Based on Fat-Suppressed T2- Weighted Imaging for Preoperative Prediction of Triple-Negative Breast Cancer. Sun R; Hu Y; Wang X; Huang Z; Yang Y; Zhang S; Shi F; Chen L; Liu H; Wang X Curr Med Imaging; 2024; 20():e15734056293294. PubMed ID: 38644724 [TBL] [Abstract][Full Text] [Related]
36. Quantitative image signature and machine learning-based prediction of outcomes in cerebral cavernous malformations. Jabal MS; Mohammed MA; Kobeissi H; Lanzino G; Brinjikji W; Flemming KD J Stroke Cerebrovasc Dis; 2024 Jan; 33(1):107462. PubMed ID: 37931483 [TBL] [Abstract][Full Text] [Related]
37. [Predicting cerebral glioma enhancement pattern using a machine learning-based magnetic resonance imaging radiomics model]. He H; Guo E; Meng W; Wang Y; Wang W; He W; Wu Y; Yang W Nan Fang Yi Ke Da Xue Xue Bao; 2024 Jan; 44(1):194-200. PubMed ID: 38293992 [TBL] [Abstract][Full Text] [Related]
38. Differential diagnosis by unenhanced FLAIR T2-weighted magnetic resonance images between solitary high grade gliomas and cerebral metastases appearing as contrast-enhancing cortico-subcortical lesions. Muccio CF; Tarantino A; Esposito G; Cerase A J Neurooncol; 2011 Jul; 103(3):713-7. PubMed ID: 21069426 [TBL] [Abstract][Full Text] [Related]
39. Quantification of T2-FLAIR Mismatch in Nonenhancing Diffuse Gliomas Using Digital Subtraction. Cho NS; Sanvito F; Le VL; Oshima S; Teraishi A; Yao J; Telesca D; Raymond C; Pope WB; Nghiemphu PL; Lai A; Cloughesy TF; Salamon N; Ellingson BM AJNR Am J Neuroradiol; 2024 Feb; 45(2):188-197. PubMed ID: 38238098 [TBL] [Abstract][Full Text] [Related]
40. Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast-Enhanced MRI. Yang X; Fan X; Lin S; Zhou Y; Liu H; Wang X; Zuo Z; Zeng Y J Magn Reson Imaging; 2024 Jun; 59(6):2238-2249. PubMed ID: 37855421 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]