These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 39254682)
21. Developing Benign Ni/g-C Pieta IS; Gieroba B; Kalisz G; Pieta P; Nowakowski R; Naushad M; Rathi A; Gawande MB; Sroka-Bartnicka A; Zboril R Ind Eng Chem Res; 2022 Jul; 61(29):10496-10510. PubMed ID: 35938051 [TBL] [Abstract][Full Text] [Related]
22. Study on the selective hydrogenation of isophorone. Xu L; Sun S; Zhang X; Gao H; Wang W RSC Adv; 2021 Jan; 11(8):4465-4471. PubMed ID: 35424410 [TBL] [Abstract][Full Text] [Related]
23. Hydrogenation of Carbon Dioxide to Methanol over Non-Cu-based Heterogeneous Catalysts. Sha F; Han Z; Tang S; Wang J; Li C ChemSusChem; 2020 Dec; 13(23):6160-6181. PubMed ID: 33146940 [TBL] [Abstract][Full Text] [Related]
24. Molecular hydrogen and water activation by transition metal frustrated Lewis pairs containing ruthenium or osmium components: catalytic hydrogenation assays. Beard S; Grasa A; Viguri F; Rodríguez R; López JA; Lahoz FJ; García-Orduña P; Lamata P; Carmona D Dalton Trans; 2023 Sep; 52(37):13216-13228. PubMed ID: 37665066 [TBL] [Abstract][Full Text] [Related]
25. Cobalt-Polypyrrole/Melamine-Derived Co-N@NC Catalysts for Efficient Base-Free Formic Acid Dehydrogenation and Formylation of Quinolines through Transfer Hydrogenation. Leng Y; Du S; Feng G; Sang X; Jiang P; Li H; Wang D ACS Appl Mater Interfaces; 2020 Jan; 12(1):474-483. PubMed ID: 31802662 [TBL] [Abstract][Full Text] [Related]
26. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones. Li YY; Yu SL; Shen WY; Gao JX Acc Chem Res; 2015 Sep; 48(9):2587-98. PubMed ID: 26301426 [TBL] [Abstract][Full Text] [Related]
27. The Role of Copper in the Hydrogenation of Furfural and Levulinic Acid. García-Sancho C; Mérida-Robles JM; Cecilia-Buenestado JA; Moreno-Tost R; Maireles-Torres PJ Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768767 [TBL] [Abstract][Full Text] [Related]
28. Crucial aspects in the design of chirally modified noble metal catalysts for asymmetric hydrogenation of activated ketones. Baiker A Chem Soc Rev; 2015 Nov; 44(21):7449-64. PubMed ID: 26186057 [TBL] [Abstract][Full Text] [Related]
29. Water-Soluble Noble Metal Nanoparticle Catalysts Capped with Small Organic Molecules for Organic Transformations in Water. Alam AM; Shon YS ACS Appl Nano Mater; 2021 Apr; 4(4):3294-3318. PubMed ID: 34095774 [TBL] [Abstract][Full Text] [Related]
30. Ruthenium-Picolylamine-Incorporated Mixed-Linker MOFs: Highly Active Heterogeneous Catalysts for Olefin and Aldehyde Hydrogenation. Almeida LD; Anbari WH; Gong X; Poloneeva D; Meijerink M; Cerillo JL; Garzon-Tovar L; Gascon J ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38079363 [TBL] [Abstract][Full Text] [Related]
31. Supported Cu Nanoparticles as Selective and Stable Catalysts for the Gas Phase Hydrogenation of 1,3-Butadiene in Alkene-Rich Feeds. Totarella G; Beerthuis R; Masoud N; Louis C; Delannoy L; de Jongh PE J Phys Chem C Nanomater Interfaces; 2021 Jan; 125(1):366-375. PubMed ID: 33488906 [TBL] [Abstract][Full Text] [Related]
32. Reduction of Nitro Compounds Using 3d-Non-Noble Metal Catalysts. Formenti D; Ferretti F; Scharnagl FK; Beller M Chem Rev; 2019 Feb; 119(4):2611-2680. PubMed ID: 30516963 [TBL] [Abstract][Full Text] [Related]
33. Advancements in the development of fluorescent chemosensors based on CN bond isomerization/modulation mechanistic approaches. Tamrakar A; Wani MA; Mishra G; Srivastava A; Pandey R; Pandey MD Anal Methods; 2024 Apr; 16(15):2198-2228. PubMed ID: 38567418 [TBL] [Abstract][Full Text] [Related]
34. Recent advances in non-noble metal-based oxide materials as heterogeneous catalysts for C-H activation. Mal DD; Pradhan D Dalton Trans; 2022 Nov; 51(46):17527-17542. PubMed ID: 36373902 [TBL] [Abstract][Full Text] [Related]
35. Cinnamaldehyde hydrogenation over carbon supported molybdenum and tungsten carbide catalysts. Führer M; van Haasterecht T; Bitter JH Chem Commun (Camb); 2022 Dec; 58(98):13608-13611. PubMed ID: 36404738 [TBL] [Abstract][Full Text] [Related]
36. In Situ Generation and Stabilization of Accessible Cu/Cu Chen K; Ling JL; Wu CD Angew Chem Int Ed Engl; 2020 Jan; 59(5):1925-1931. PubMed ID: 31755200 [TBL] [Abstract][Full Text] [Related]
37. Three-Shell Cu@Co@Ni Nanoparticles Stabilized with a Metal-Organic Framework for Enhanced Tandem Catalysis. Sun JL; Chen YZ; Ge BD; Li JH; Wang GM ACS Appl Mater Interfaces; 2019 Jan; 11(1):940-947. PubMed ID: 30556388 [TBL] [Abstract][Full Text] [Related]
38. Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations. Liu W; Sahoo B; Junge K; Beller M Acc Chem Res; 2018 Aug; 51(8):1858-1869. PubMed ID: 30091891 [TBL] [Abstract][Full Text] [Related]
39. Versatile Hollow ZSM-5 Nanoreactors Loaded with Tailorable Metal Catalysts for Selective Hydrogenation Reactions. Li B; Kwok KM; Zeng HC ACS Appl Mater Interfaces; 2021 May; 13(17):20524-20538. PubMed ID: 33881838 [TBL] [Abstract][Full Text] [Related]
40. Confinement Effects in Well-Defined Metal-Organic Frameworks (MOFs) for Selective CO Lu X; Song C; Qi X; Li D; Lin L Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835639 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]