These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 39255132)

  • 21. Investigating cortical activity during cybersickness by fNIRS.
    Yeo SS; Park SY; Yun SH
    Sci Rep; 2024 Apr; 14(1):8093. PubMed ID: 38582769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of power wheelchair driving performance in simulator compared to driving in real-life situations: the SIMADAPT (simulator ADAPT) project-a pilot study.
    Fraudet B; Leblong E; Piette P; Nicolas B; Gouranton V; Babel M; Devigne L; Pasteau F; Gallien P
    J Neuroeng Rehabil; 2024 Apr; 21(1):60. PubMed ID: 38654367
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment.
    Kim HK; Park J; Choi Y; Choe M
    Appl Ergon; 2018 May; 69():66-73. PubMed ID: 29477332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of economically friendly acustimulation approach against cybersickness in video-watching tasks using consumer virtual reality devices.
    Liu R; Zhuang C; Yang R; Ma L
    Appl Ergon; 2020 Jan; 82():102946. PubMed ID: 31487560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characteristic changes in the physiological components of cybersickness.
    Kim YY; Kim HJ; Kim EN; Ko HD; Kim HT
    Psychophysiology; 2005 Sep; 42(5):616-25. PubMed ID: 16176385
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensation of presence and cybersickness in applications of virtual reality for advanced rehabilitation.
    Kiryu T; So RH
    J Neuroeng Rehabil; 2007 Sep; 4():34. PubMed ID: 17894857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing Postural Instability and Cybersickness Through Linear and Angular Displacement.
    Widdowson C; Becerra I; Merrill C; Wang RF; LaValle S
    Hum Factors; 2021 Mar; 63(2):296-311. PubMed ID: 31651196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Can the Perceived Timing of Multisensory Events Predict Cybersickness?
    Sadiq O; Barnett-Cowan M
    Multisens Res; 2022 Oct; 35(7-8):623-652. PubMed ID: 36731533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Effects of Auditory, Visual, and Cognitive Distractions on Cybersickness in Virtual Reality.
    Venkatakrishnan R; Venkatakrishnan R; Raveendranath B; Sarno DM; Robb AC; Lin WC; Babu SV
    IEEE Trans Vis Comput Graph; 2024 Aug; 30(8):5350-5369. PubMed ID: 37418399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emotional and Cognitive Modulation of Cybersickness: The Role of Pain Catastrophizing and Body Awareness.
    Mittelstädt JM; Wacker J; Stelling D
    Hum Factors; 2019 Mar; 61(2):322-336. PubMed ID: 30320515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in Navigation Controls and Field-of-View Modes Affect Cybersickness Severity and Spatiotemporal Gait Patterns After Exposure to Virtual Environments.
    Lin MB; Wu B; Cheng SW
    Hum Factors; 2024 Jul; 66(7):1942-1960. PubMed ID: 37501376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cybersickness. A systematic literature review of adverse effects related to virtual reality.
    Simón-Vicente L; Rodríguez-Cano S; Delgado-Benito V; Ausín-Villaverde V; Cubo Delgado E
    Neurologia (Engl Ed); 2024 Oct; 39(8):701-709. PubMed ID: 39396266
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cybersickness Variability by Race: Findings From 6 Studies and a Mini Meta-analysis.
    Martingano AJ; Brown E; Telaak SH; Dolwick AP; Persky S
    J Med Internet Res; 2022 Jun; 24(6):e36843. PubMed ID: 35648477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Profiling subjective symptoms and autonomic changes associated with cybersickness.
    Gavgani AM; Nesbitt KV; Blackmore KL; Nalivaiko E
    Auton Neurosci; 2017 Mar; 203():41-50. PubMed ID: 28010995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of bone-conducted vibration on simulator sickness in virtual reality.
    Weech S; Moon J; Troje NF
    PLoS One; 2018; 13(3):e0194137. PubMed ID: 29590147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Virtual Reality Is Sexist: But It Does Not Have to Be.
    Stanney K; Fidopiastis C; Foster L
    Front Robot AI; 2020; 7():4. PubMed ID: 33501173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cybersickness and Its Severity Arising from Virtual Reality Content: A Comprehensive Study.
    Oh H; Son W
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cybersickness: a Multisensory Integration Perspective.
    Gallagher M; Ferrè ER
    Multisens Res; 2018 Jan; 31(7):645-674. PubMed ID: 31264611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A neuro-fuzzy warning system for combating cybersickness in the elderly caused by the virtual environment on a TFT-LCD.
    Liu CL
    Appl Ergon; 2009 May; 40(3):316-24. PubMed ID: 19144322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studying the Influence of Multisensory Stimuli on a Firefighting Training Virtual Environment.
    Narciso D; Melo M; Rodrigues S; Cunha JP; Vasconcelos-Raposo J; Bessa M
    IEEE Trans Vis Comput Graph; 2024 Jul; 30(7):4122-4136. PubMed ID: 37028005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.