These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 39255503)
21. Molecular Docking, Metal Substitution and Hydrolysis Reaction of Chiral Substrates of Phosphotriesterase. de Castro AA; Caetano MS; Silva TC; Mancini DT; Rocha EP; da Cunha EF; Ramalho TC Comb Chem High Throughput Screen; 2016; 19(4):334-44. PubMed ID: 27012528 [TBL] [Abstract][Full Text] [Related]
22. Atropselective Hydrolysis of Chiral Binol-Phosphate Esters Catalyzed by the Phosphotriesterase from Xiang DF; Narindoshvili T; Raushel FM Biochemistry; 2020 Nov; 59(46):4463-4469. PubMed ID: 33167613 [TBL] [Abstract][Full Text] [Related]
23. Steady-State Kinetics of Enzyme-Catalyzed Hydrolysis of Echothiophate, a P-S Bonded Organophosphorus as Monitored by Spectrofluorimetry. Zueva IV; Lushchekina SV; Daudé D; Chabrière E; Masson P Molecules; 2020 Mar; 25(6):. PubMed ID: 32192230 [TBL] [Abstract][Full Text] [Related]
24. Directed evolution of phosphotriesterase from Pseudomonas diminuta for heterologous expression in Escherichia coli results in stabilization of the metal-free state. Roodveldt C; Tawfik DS Protein Eng Des Sel; 2005 Jan; 18(1):51-8. PubMed ID: 15790580 [TBL] [Abstract][Full Text] [Related]
25. Stereoselective Formation of Multiple Reaction Products by the Phosphotriesterase from Bigley AN; Narindoshvili T; Xiang DF; Raushel FM Biochemistry; 2020 Mar; 59(12):1273-1288. PubMed ID: 32167750 [TBL] [Abstract][Full Text] [Related]
26. The structure of an enzyme-product complex reveals the critical role of a terminal hydroxide nucleophile in the bacterial phosphotriesterase mechanism. Jackson C; Kim HK; Carr PD; Liu JW; Ollis DL Biochim Biophys Acta; 2005 Aug; 1752(1):56-64. PubMed ID: 16054447 [TBL] [Abstract][Full Text] [Related]
27. Activation of the binuclear metal center through formation of phosphotriesterase-inhibitor complexes. Samples CR; Raushel FM; DeRose VJ Biochemistry; 2007 Mar; 46(11):3435-42. PubMed ID: 17315951 [TBL] [Abstract][Full Text] [Related]
28. The crystal structure of the phosphotriesterase from M. tuberculosis, another member of phosphotriesterase-like lactonase family. Zhang L; Wang H; Liu X; Zhou W; Rao Z Biochem Biophys Res Commun; 2019 Mar; 510(2):224-229. PubMed ID: 30704759 [TBL] [Abstract][Full Text] [Related]
29. Characterization of the phosphotriesterase capable of hydrolyzing aryl-organophosphate flame retardants. Wang J; Yuan L; Wu W; Yan Y Appl Microbiol Biotechnol; 2022 Oct; 106(19-20):6493-6504. PubMed ID: 36107214 [TBL] [Abstract][Full Text] [Related]
30. QM/MM and MM MD simulations on decontamination of the V-type nerve agent VX by phosphotriesterase: toward a comprehensive understanding of steroselectivity and activity. Fan F; Zheng Y; Fu Y; Zhang Y; Zheng H; Lyu C; Chen L; Huang J; Cao Z Phys Chem Chem Phys; 2022 May; 24(18):10933-10943. PubMed ID: 35466335 [TBL] [Abstract][Full Text] [Related]
31. Phosphotriesterase variants with high methylphosphonatase activity and strong negative trade-off against phosphotriesters. Briseño-Roa L; Timperley CM; Griffiths AD; Fersht AR Protein Eng Des Sel; 2011 Jan; 24(1-2):151-9. PubMed ID: 21037279 [TBL] [Abstract][Full Text] [Related]
32. Overcoming the Challenges of Enzyme Evolution To Adapt Phosphotriesterase for V-Agent Decontamination. Bigley AN; Desormeaux E; Xiang DF; Bae SY; Harvey SP; Raushel FM Biochemistry; 2019 Apr; 58(15):2039-2053. PubMed ID: 30893549 [TBL] [Abstract][Full Text] [Related]
33. QM/MM and MM MD Simulations on Enzymatic Degradation of the Nerve Agent VR by Phosphotriesterase. Yu J; Fu Y; Cao Z J Phys Chem B; 2023 Aug; 127(34):7462-7471. PubMed ID: 37584503 [TBL] [Abstract][Full Text] [Related]
34. Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template. Meier MM; Rajendran C; Malisi C; Fox NG; Xu C; Schlee S; Barondeau DP; Höcker B; Sterner R; Raushel FM J Am Chem Soc; 2013 Aug; 135(31):11670-7. PubMed ID: 23837603 [TBL] [Abstract][Full Text] [Related]
35. Evolution in the amidohydrolase superfamily: substrate-assisted gain of function in the E183K mutant of a phosphotriesterase-like metal-carboxylesterase. Mandrich L; Manco G Biochemistry; 2009 Jun; 48(24):5602-12. PubMed ID: 19438255 [TBL] [Abstract][Full Text] [Related]
36. Molecular dynamics simulations of the detoxification of paraoxon catalyzed by phosphotriesterase. Zhang X; Wu R; Song L; Lin Y; Lin M; Cao Z; Wu W; Mo Y J Comput Chem; 2009 Nov; 30(15):2388-401. PubMed ID: 19353598 [TBL] [Abstract][Full Text] [Related]
37. Comparative investigation of the reaction mechanisms of the organophosphate-degrading phosphotriesterases from Agrobacterium radiobacter (OpdA) and Pseudomonas diminuta (OPH). Pedroso MM; Ely F; Mitić N; Carpenter MC; Gahan LR; Wilcox DE; Larrabee JL; Ollis DL; Schenk G J Biol Inorg Chem; 2014 Dec; 19(8):1263-75. PubMed ID: 25104333 [TBL] [Abstract][Full Text] [Related]
38. Hydrolysis of DFP and the nerve agent (S)-sarin by DFPase proceeds along two different reaction pathways: implications for engineering bioscavengers. Wymore T; Field MJ; Langan P; Smith JC; Parks JM J Phys Chem B; 2014 May; 118(17):4479-89. PubMed ID: 24720808 [TBL] [Abstract][Full Text] [Related]
39. Enzymatic neutralization of the chemical warfare agent VX: evolution of phosphotriesterase for phosphorothiolate hydrolysis. Bigley AN; Xu C; Henderson TJ; Harvey SP; Raushel FM J Am Chem Soc; 2013 Jul; 135(28):10426-32. PubMed ID: 23789980 [TBL] [Abstract][Full Text] [Related]
40. Contribution of the active-site metal cation to the catalytic activity and to the conformational stability of phosphotriesterase: temperature- and pH-dependence. Rochu D; Viguié N; Renault F; Crouzier D; Froment MT; Masson P Biochem J; 2004 Jun; 380(Pt 3):627-33. PubMed ID: 15018612 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]