These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 39256341)

  • 21. Flat histogram diagrammatic Monte Carlo method: calculation of the Green's function in imaginary time.
    Diamantis NG; Manousakis E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043302. PubMed ID: 24229299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Equation of State and Thermometry of the 2D SU(N) Fermi-Hubbard Model.
    Pasqualetti G; Bettermann O; Darkwah Oppong N; Ibarra-García-Padilla E; Dasgupta S; Scalettar RT; Hazzard KRA; Bloch I; Fölling S
    Phys Rev Lett; 2024 Feb; 132(8):083401. PubMed ID: 38457712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards an exact description of electronic wavefunctions in real solids.
    Booth GH; Grüneis A; Kresse G; Alavi A
    Nature; 2013 Jan; 493(7432):365-70. PubMed ID: 23254929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantum Monte Carlo formulation of the second order algebraic diagrammatic construction: Toward a massively parallel correlated excited state method.
    Kulahlioglu AH; Rehn D; Dreuw A
    J Chem Phys; 2022 Jan; 156(4):044105. PubMed ID: 35105070
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Off-diagonal expansion quantum Monte Carlo.
    Albash T; Wagenbreth G; Hen I
    Phys Rev E; 2017 Dec; 96(6-1):063309. PubMed ID: 29347413
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coarse-Graining of Imaginary Time Feynman Path Integrals: Inclusion of Intramolecular Interactions and Bottom-up Force-Matching.
    Ryu WH; Voth GA
    J Phys Chem A; 2022 Sep; 126(35):6004-6019. PubMed ID: 36007243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. p-Wave superfluidity by spin-nematic Fermi surface deformation.
    Gukelberger J; Kozik E; Pollet L; Prokof'ev N; Sigrist M; Svistunov B; Troyer M
    Phys Rev Lett; 2014 Nov; 113(19):195301. PubMed ID: 25415910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An in-principle super-polynomial quantum advantage for approximating combinatorial optimization problems via computational learning theory.
    Pirnay N; Ulitzsch V; Wilde F; Eisert J; Seifert JP
    Sci Adv; 2024 Mar; 10(11):eadj5170. PubMed ID: 38489369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recursive graphical construction of feynman diagrams and their multiplicities in straight phi(4) and straight phi2A theory.
    Kleinert H; Pelster A; Kastening B; Bachmann M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1537-59. PubMed ID: 11088617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals.
    Sinitskiy AV; Voth GA
    J Chem Phys; 2015 Sep; 143(9):094104. PubMed ID: 26342356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diagrammatic quantum Monte Carlo toward the calculation of transport properties in disordered semiconductors.
    Wang YC; Zhao Y
    J Chem Phys; 2022 May; 156(20):204116. PubMed ID: 35649844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-slit electron diffraction with Aharonov-Bohm phase: Feynman's thought experiment with quantum point contacts.
    Khatua P; Bansal B; Shahar D
    Phys Rev Lett; 2014 Jan; 112(1):010403. PubMed ID: 24483873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Counting Feynman diagrams via many-body relations.
    Kugler FB
    Phys Rev E; 2018 Aug; 98(2-1):023303. PubMed ID: 30253606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Competing orders in the 2D half-filled SU(2N) Hubbard model through the pinning-field quantum Monte Carlo simulations.
    Wang D; Li Y; Cai Z; Zhou Z; Wang Y; Wu C
    Phys Rev Lett; 2014 Apr; 112(15):156403. PubMed ID: 24785061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum Quasi-Monte Carlo Technique for Many-Body Perturbative Expansions.
    Maček M; Dumitrescu PT; Bertrand C; Triggs B; Parcollet O; Waintal X
    Phys Rev Lett; 2020 Jul; 125(4):047702. PubMed ID: 32794809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interpreting nonlinear vibrational spectroscopy with the classical mechanical analogs of double-sided Feynman diagrams.
    Noid WG; Loring RF
    J Chem Phys; 2004 Oct; 121(15):7057-69. PubMed ID: 15473771
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Orbital-selective Mott phases of a one-dimensional three-orbital Hubbard model studied using computational techniques.
    Liu G; Kaushal N; Li S; Bishop CB; Wang Y; Johnston S; Alvarez G; Moreo A; Dagotto E
    Phys Rev E; 2016 Jun; 93(6):063313. PubMed ID: 27415393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Learning for Feynman's Path Integral in Strong-Field Time-Dependent Dynamics.
    Liu X; Zhang G; Li J; Shi G; Zhou M; Huang B; Tang Y; Song X; Yang W
    Phys Rev Lett; 2020 Mar; 124(11):113202. PubMed ID: 32242706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regularization of diagrammatic series with zero convergence radius.
    Pollet L; Prokof'ev NV; Svistunov BV
    Phys Rev Lett; 2010 Nov; 105(21):210601. PubMed ID: 21231279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical stabilization of entanglement computation in auxiliary-field quantum Monte Carlo simulations of interacting many-fermion systems.
    Broecker P; Trebst S
    Phys Rev E; 2016 Dec; 94(6-1):063306. PubMed ID: 28085385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.