These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 39256412)

  • 1. Fully recyclable and tough thermoplastic elastomers from simple bio-sourced δ-valerolactones.
    Ma K; An HY; Nam J; Reilly LT; Zhang YL; Chen EY; Xu TQ
    Nat Commun; 2024 Sep; 15(1):7904. PubMed ID: 39256412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A circular polyester platform based on simple gem-disubstituted valerolactones.
    Li XL; Clarke RW; Jiang JY; Xu TQ; Chen EY
    Nat Chem; 2023 Feb; 15(2):278-285. PubMed ID: 36344817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustainable Elastomers from Renewable Biomass.
    Wang Z; Yuan L; Tang C
    Acc Chem Res; 2017 Jul; 50(7):1762-1773. PubMed ID: 28636365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biorenewable and circular polyolefin thermoplastic elastomers.
    Sha Y; Chen X; Sun W; Zhou J; He Y; Xu E; Luo Z; Zhou Y; Jia P
    Nat Commun; 2024 Oct; 15(1):8480. PubMed ID: 39353954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalizable and Chemically Recyclable Thermoplastics from Chemoselective Ring-Opening Polymerization of Bio-renewable Bifunctional α-Methylene-δ-valerolactone.
    Li J; Liu F; Liu Y; Shen Y; Li Z
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202207105. PubMed ID: 35674460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and Controlled Polymerization of Bio-sourced δ-Caprolactone toward Fully Recyclable Polyesters and Thermoplastic Elastomers.
    Li C; Wang L; Yan Q; Liu F; Shen Y; Li Z
    Angew Chem Int Ed Engl; 2022 Apr; 61(16):e202201407. PubMed ID: 35150037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological Studies of Solution-Crystallized Thermoplastic Elastomers with Polyethylene Endblocks and a Random-Copolymer Midblock.
    Yan J; Lee B; Smith SD; Spontak RJ
    Macromol Rapid Commun; 2021 Nov; 42(21):e2100442. PubMed ID: 34490939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supersoft Norbornene-Based Thermoplastic Elastomers with High Strength and Upper Service Temperature.
    Cater HL; Allen MJ; Linnell MI; Rylski AK; Wu Y; Lien HM; Mangolini F; Freeman BD; Page ZA
    Adv Mater; 2024 Jul; 36(30):e2402431. PubMed ID: 38718377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of sacrificial coordination bonds on the mechanical performance of lignin-based thermoplastic elastomer composites.
    Huang J; Liu W; Qiu X; Tu Z; Li J; Lou H
    Int J Biol Macromol; 2021 Jul; 183():1450-1458. PubMed ID: 33974926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable thermoplastic elastomer gels derived from controlled-distribution triblock copolymers with crystallizable endblocks.
    Hames NT; Balsbough D; Yan J; Wu S; Zuo X; Spontak RJ
    Mater Horiz; 2023 Oct; 10(11):4968-4975. PubMed ID: 37622215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable Polycaprolactone Polyol-Based Thermoplastic Poly(ester ester) Elastomers Showing Superior Mechanical Properties and Biodegradability.
    Choi JH; Woo JJ; Kim I
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting Sodium Coordination in Alternating Monomer Sequences to Toughen Degradable Block Polyester Thermoplastic Elastomers.
    Gregory GL; Williams CK
    Macromolecules; 2022 Mar; 55(6):2290-2299. PubMed ID: 35558439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically Recyclable Biobased Polyurethanes.
    Schneiderman DK; Vanderlaan ME; Mannion AM; Panthani TR; Batiste DC; Wang JZ; Bates FS; Macosko CW; Hillmyer MA
    ACS Macro Lett; 2016 Apr; 5(4):515-518. PubMed ID: 35607243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual Recycling of Depolymerization Catalyst and Biodegradable Polyester that Markedly Outperforms Polyolefins.
    Li XL; Clarke RW; An HY; Gowda RR; Jiang JY; Xu TQ; Chen EY
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303791. PubMed ID: 37102633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong, Resilient, and Sustainable Aliphatic Polyester Thermoplastic Elastomers.
    Watts A; Kurokawa N; Hillmyer MA
    Biomacromolecules; 2017 Jun; 18(6):1845-1854. PubMed ID: 28467049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tough while Recyclable Plastics Enabled by Monothiodilactone Monomers.
    Wang Y; Zhu Y; Lv W; Wang X; Tao Y
    J Am Chem Soc; 2023 Jan; 145(3):1877-1885. PubMed ID: 36594572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of degree of substitution on the microphase separation and mechanical properties of cellooligosaccharide acetate-based elastomers.
    Katsuhara S; Sunagawa N; Igarashi K; Takeuchi Y; Takahashi K; Yamamoto T; Li F; Tajima K; Isono T; Satoh T
    Carbohydr Polym; 2023 Sep; 316():120976. PubMed ID: 37321706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneously Healable Thermoplastic Elastomers Achieved through One-Pot Living Ring-Opening Metathesis Copolymerization of Well-Designed Bulky Monomers.
    Yang JX; Long YY; Pan L; Men YF; Li YS
    ACS Appl Mater Interfaces; 2016 May; 8(19):12445-55. PubMed ID: 27136676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of temperature, rate, and molecular weight on the failure behavior of soft block copoly(ether-ester) thermoplastic elastomers.
    Sbrescia S; Ju J; Creton C; Engels T; Seitz M
    Soft Matter; 2023 Jul; 19(27):5127-5141. PubMed ID: 37387252
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Mahmood Q; Sun WH
    R Soc Open Sci; 2018 Jul; 5(7):180367. PubMed ID: 30109091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.