These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Biomolecular condensates formed by designer minimalistic peptides. Baruch Leshem A; Sloan-Dennison S; Massarano T; Ben-David S; Graham D; Faulds K; Gottlieb HE; Chill JH; Lampel A Nat Commun; 2023 Jan; 14(1):421. PubMed ID: 36702825 [TBL] [Abstract][Full Text] [Related]
5. A Simple Explicit-Solvent Model of Polyampholyte Phase Behaviors and Its Ramifications for Dielectric Effects in Biomolecular Condensates. Wessén J; Pal T; Das S; Lin YH; Chan HS J Phys Chem B; 2021 May; 125(17):4337-4358. PubMed ID: 33890467 [TBL] [Abstract][Full Text] [Related]
8. Phylogenetic convergence of phase separation and mitotic function in the disordered protein BuGZ. Chin AF; Zheng Y; Hilser VJ Protein Sci; 2022 Apr; 31(4):822-834. PubMed ID: 34984754 [TBL] [Abstract][Full Text] [Related]
10. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates. Lin YH; Forman-Kay JD; Chan HS Biochemistry; 2018 May; 57(17):2499-2508. PubMed ID: 29509422 [TBL] [Abstract][Full Text] [Related]
11. Biomolecular condensates: insights into early and late steps of the HIV-1 replication cycle. Di Nunzio F; Uversky VN; Mouland AJ Retrovirology; 2023 Apr; 20(1):4. PubMed ID: 37029379 [TBL] [Abstract][Full Text] [Related]
12. Determinants for intrinsically disordered protein recruitment into phase-separated protein condensates. Jo Y; Jang J; Song D; Park H; Jung Y Chem Sci; 2022 Jan; 13(2):522-530. PubMed ID: 35126984 [TBL] [Abstract][Full Text] [Related]
13. Single-Molecule Measurement of Protein Interaction Dynamics within Biomolecular Condensates. Yoshida SR; Chong S J Vis Exp; 2024 Jan; (203):. PubMed ID: 38251748 [TBL] [Abstract][Full Text] [Related]
14. Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components. Espinosa JR; Joseph JA; Sanchez-Burgos I; Garaizar A; Frenkel D; Collepardo-Guevara R Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13238-13247. PubMed ID: 32482873 [TBL] [Abstract][Full Text] [Related]
15. In-Silico Analysis of pH-Dependent Liquid-Liquid Phase Separation in Intrinsically Disordered Proteins. Pintado-Grima C; Bárcenas O; Ventura S Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883530 [TBL] [Abstract][Full Text] [Related]
16. Different states and the associated fates of biomolecular condensates. Ranganathan S; Liu J; Shakhnovich E Essays Biochem; 2022 Dec; 66(7):849-862. PubMed ID: 36350032 [TBL] [Abstract][Full Text] [Related]
17. Liquid-liquid phase separation of tau: From molecular biophysics to physiology and disease. Rai SK; Savastano A; Singh P; Mukhopadhyay S; Zweckstetter M Protein Sci; 2021 Jul; 30(7):1294-1314. PubMed ID: 33930220 [TBL] [Abstract][Full Text] [Related]
18. Protein phase separation and its role in chromatin organization and diseases. Li J; Zhang Y; Chen X; Ma L; Li P; Yu H Biomed Pharmacother; 2021 Jun; 138():111520. PubMed ID: 33765580 [TBL] [Abstract][Full Text] [Related]
19. Numerical Techniques for Applications of Analytical Theories to Sequence-Dependent Phase Separations of Intrinsically Disordered Proteins. Lin YH; Wessén J; Pal T; Das S; Chan HS Methods Mol Biol; 2023; 2563():51-94. PubMed ID: 36227468 [TBL] [Abstract][Full Text] [Related]
20. Molecular Details of Protein Condensates Probed by Microsecond Long Atomistic Simulations. Zheng W; Dignon GL; Jovic N; Xu X; Regy RM; Fawzi NL; Kim YC; Best RB; Mittal J J Phys Chem B; 2020 Dec; 124(51):11671-11679. PubMed ID: 33302617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]