These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39258707)
61. Photo-mediated optimized synthesis of silver nanoparticles for the selective detection of Iron(III), antibacterial and antioxidant activity. Kumar V; Mohan S; Singh DK; Verma DK; Singh VK; Hasan SH Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1004-1019. PubMed ID: 27987654 [TBL] [Abstract][Full Text] [Related]
62. Perforating Freestanding Molybdenum Disulfide Monolayers with Highly Charged Ions. Kozubek R; Tripathi M; Ghorbani-Asl M; Kretschmer S; Madauß L; Pollmann E; O'Brien M; McEvoy N; Ludacka U; Susi T; Duesberg GS; Wilhelm RA; Krasheninnikov AV; Kotakoski J; Schleberger M J Phys Chem Lett; 2019 Mar; 10(5):904-910. PubMed ID: 30646683 [TBL] [Abstract][Full Text] [Related]
63. A Sensitive Enzymatic Electrochemical Biosensor for Cholesterol Based on Cobalt Ferrite@Molybdenum Disulfide/Gold Nanoparticles. Ayyandurai N; Venkatesan S; Raman S ACS Appl Bio Mater; 2024 Jun; 7(6):4080-4092. PubMed ID: 38771954 [TBL] [Abstract][Full Text] [Related]
64. Preparation of AS1411 Aptamer Modified Mn-MoS Zheng S; Zhang M; Bai H; He M; Dong L; Cai L; Zhao M; Wang Q; Xu K; Li J Int J Nanomedicine; 2019; 14():9513-9524. PubMed ID: 31819447 [TBL] [Abstract][Full Text] [Related]
65. Synergistic activation of peroxymonosulfate and persulfate by ferrous ion and molybdenum disulfide for pollutant degradation: Theoretical and experimental studies. He D; Cheng Y; Zeng Y; Luo H; Luo K; Li J; Pan X; Barceló D; Crittenden JC Chemosphere; 2020 Feb; 240():124979. PubMed ID: 31726597 [TBL] [Abstract][Full Text] [Related]
66. Green synthesis and characterization of silver nanoparticles and its efficacy against Rhizoctonia solani, a fungus causing sheath blight disease in rice. Islam AKMS; Bhuiyan R; Nihad SAI; Akter R; Khan MAI; Akter S; Islam MR; Khokon MAR; Latif MA PLoS One; 2024; 19(6):e0304817. PubMed ID: 38889131 [TBL] [Abstract][Full Text] [Related]
67. Controlled release fertilizer delivery system derived from rice straw cellulose nanofibres: a circular economy based solution for sustainable development. Sharma N; Allardyce BJ; Rajkhowa R; Agrawal R Bioengineered; 2023 Dec; 14(1):2242124. PubMed ID: 37548430 [TBL] [Abstract][Full Text] [Related]
68. Adsorption toward Cu(II) and inhibitory effect on bacterial growth occurring on molybdenum disulfide-montmorillonite hydrogel surface. Wang W; Wen T; Bai H; Zhao Y; Ni J; Yang L; Xia L; Song S Chemosphere; 2020 Jun; 248():126025. PubMed ID: 32006838 [TBL] [Abstract][Full Text] [Related]
69. Multifunctional molybdenum disulfide-copper nanocomposite that enhances the antibacterial activity, promotes rice growth and induces rice resistance. Li Y; Liu Y; Yang D; Jin Q; Wu C; Cui J J Hazard Mater; 2020 Jul; 394():122551. PubMed ID: 32272326 [TBL] [Abstract][Full Text] [Related]
70. Preparation of nanoscale iron (oxide, oxyhydroxides and zero-valent) particles derived from blueberries: Reactivity, characterization and removal mechanism of arsenate. Manquián-Cerda K; Cruces E; Angélica Rubio M; Reyes C; Arancibia-Miranda N Ecotoxicol Environ Saf; 2017 Nov; 145():69-77. PubMed ID: 28708983 [TBL] [Abstract][Full Text] [Related]
71. Fabrication of MgFe2O4/MoS2 Heterostructure Nanowires for Photoelectrochemical Catalysis. Fan W; Li M; Bai H; Xu D; Chen C; Li C; Ge Y; Shi W Langmuir; 2016 Feb; 32(6):1629-36. PubMed ID: 26797320 [TBL] [Abstract][Full Text] [Related]
72. Earth-abundant and environmentally benign Ni-Zn iron oxide intercalated in a polyaniline based nanohybrid as an ultrafast photodetector. Singh A; Verma A; Yadav BC; Chauhan P Dalton Trans; 2022 May; 51(20):7864-7877. PubMed ID: 35527707 [TBL] [Abstract][Full Text] [Related]
73. Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: role of surface properties. Zhang Y; Yang M; Dou XM; He H; Wang DS Environ Sci Technol; 2005 Sep; 39(18):7246-53. PubMed ID: 16201655 [TBL] [Abstract][Full Text] [Related]
74. Synthesis and characterization of zinc oxide nanorods and its photocatalytic activities towards degradation of 2,4-D. Meenakshi G; Sivasamy A Ecotoxicol Environ Saf; 2017 Jan; 135():243-251. PubMed ID: 27744194 [TBL] [Abstract][Full Text] [Related]
75. Down-top nanofabrication of binary (CdO) Al-Hada NM; Mohamed Kamari H; Abdullah CAC; Saion E; Shaari AH; Talib ZA; Matori KA Int J Nanomedicine; 2017; 12():8309-8323. PubMed ID: 29200844 [TBL] [Abstract][Full Text] [Related]
76. Green chemistry approach for the synthesis of biocompatible graphene. Gurunathan S; Han JW; Kim JH Int J Nanomedicine; 2013; 8():2719-32. PubMed ID: 23940417 [TBL] [Abstract][Full Text] [Related]
77. Mechanism of As(III) removal properties of biochar-supported molybdenum-disulfide/iron-oxide system. Khan ZH; Gao M; Wu J; Bi R; Mehmood CT; Song Z Environ Pollut; 2021 Oct; 287():117600. PubMed ID: 34153605 [TBL] [Abstract][Full Text] [Related]
78. Bio-inspired route for the synthesis of spherical shaped MgO:Fe(3+) nanoparticles: Structural, photoluminescence and photocatalytic investigation. Anilkumar MR; Nagaswarupa HP; Nagabhushana H; Sharma SC; Vidya YS; Anantharaju KS; Prashantha SC; Shivakuamra C; Gurushantha K Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():703-13. PubMed ID: 25988816 [TBL] [Abstract][Full Text] [Related]
80. Green synthesis and characterization of Fe Win TT; Khan S; Bo B; Zada S; Fu P Sci Rep; 2021 Nov; 11(1):21996. PubMed ID: 34754045 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]