These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A multi-site array for combined local electrochemistry and electrophysiology in the non-human primate brain. Disney AA; McKinney C; Grissom L; Lu X; Reynolds JH J Neurosci Methods; 2015 Nov; 255():29-37. PubMed ID: 26226654 [TBL] [Abstract][Full Text] [Related]
3. Wireless multi-channel single unit recording in freely moving and vocalizing primates. Roy S; Wang X J Neurosci Methods; 2012 Jan; 203(1):28-40. PubMed ID: 21933683 [TBL] [Abstract][Full Text] [Related]
4. Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain. Chen YY; Lai HY; Lin SH; Cho CW; Chao WH; Liao CH; Tsang S; Chen YF; Lin SY J Neurosci Methods; 2009 Aug; 182(1):6-16. PubMed ID: 19467262 [TBL] [Abstract][Full Text] [Related]
5. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology. Fu TM; Hong G; Viveros RD; Zhou T; Lieber CM Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10046-E10055. PubMed ID: 29109247 [TBL] [Abstract][Full Text] [Related]
6. Recording large-scale neuronal ensembles with silicon probes in the anesthetized rat. Schjetnan AG; Luczak A J Vis Exp; 2011 Oct; (56):. PubMed ID: 22042361 [TBL] [Abstract][Full Text] [Related]
7. Semi-chronic laminar recordings in the brainstem of behaving marmoset monkeys. Pomberger T; Hage SR J Neurosci Methods; 2019 Jan; 311():186-192. PubMed ID: 30352210 [TBL] [Abstract][Full Text] [Related]
8. Single-unit stability using chronically implanted multielectrode arrays. Dickey AS; Suminski A; Amit Y; Hatsopoulos NG J Neurophysiol; 2009 Aug; 102(2):1331-9. PubMed ID: 19535480 [TBL] [Abstract][Full Text] [Related]
9. Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large populations of neurons in behaving animals. Michon F; Aarts A; Holzhammer T; Ruther P; Borghs G; McNaughton B; Kloosterman F J Neural Eng; 2016 Aug; 13(4):046018. PubMed ID: 27351591 [TBL] [Abstract][Full Text] [Related]
10. Post-explant profiling of subcellular-scale carbon fiber intracortical electrodes and surrounding neurons enables modeling of recorded electrophysiology. Letner JG; Patel PR; Hsieh JC; Smith Flores IM; Della Valle E; Walker LA; Weiland JD; Chestek CA; Cai D J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36848679 [No Abstract] [Full Text] [Related]
11. Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes. Takahashi S; Anzai Y; Sakurai Y J Neurophysiol; 2003 Apr; 89(4):2245-58. PubMed ID: 12612049 [TBL] [Abstract][Full Text] [Related]
12. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131 [TBL] [Abstract][Full Text] [Related]
13. Application of floating silicon-based linear multielectrode arrays for acute recording of single neuron activity in awake behaving monkeys. Bonini L; Maranesi M; Livi A; Bruni S; Fogassi L; Holzhammer T; Paul O; Ruther P Biomed Tech (Berl); 2014 Aug; 59(4):273-81. PubMed ID: 24434299 [TBL] [Abstract][Full Text] [Related]
14. In vivo performance of a microelectrode neural probe with integrated drug delivery. Rohatgi P; Langhals NB; Kipke DR; Patil PG Neurosurg Focus; 2009 Jul; 27(1):E8. PubMed ID: 19569896 [TBL] [Abstract][Full Text] [Related]
15. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping. Heida T Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336 [TBL] [Abstract][Full Text] [Related]