These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 39259198)
41. Multisite Electrophysiology Recordings in Mice to Study Cross-Regional Communication During Anxiety. Harris AZ; Golder D; Likhtik E Curr Protoc Neurosci; 2017 Jul; 80():8.40.1-8.40.21. PubMed ID: 28678397 [TBL] [Abstract][Full Text] [Related]
42. Structural and functional changes of deep layer pyramidal neurons surrounding microelectrode arrays implanted in rat motor cortex. Gregory BA; Thompson CH; Salatino JW; Railing MJ; Zimmerman AF; Gupta B; Williams K; Beatty JA; Cox CL; Purcell EK Acta Biomater; 2023 Sep; 168():429-439. PubMed ID: 37499727 [TBL] [Abstract][Full Text] [Related]
43. Transparent, Flexible, Penetrating Microelectrode Arrays with Capabilities of Single-Unit Electrophysiology. Seo KJ; Artoni P; Qiang Y; Zhong Y; Han X; Shi Z; Yao W; Fagiolini M; Fang H Adv Biosyst; 2019 Mar; 3(3):e1800276. PubMed ID: 32627399 [TBL] [Abstract][Full Text] [Related]
44. Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates. Jackson A; Fetz EE J Neurophysiol; 2007 Nov; 98(5):3109-18. PubMed ID: 17855584 [TBL] [Abstract][Full Text] [Related]
45. A non-invasive head-holding device for chronic neural recordings in awake behaving monkeys. Amemori S; Amemori K; Cantor ML; Graybiel AM J Neurosci Methods; 2015 Jan; 240():154-60. PubMed ID: 25448381 [TBL] [Abstract][Full Text] [Related]
46. Three-micrometer-diameter needle electrode with an amplifier for extracellular in vivo recordings. Kita Y; Tsuruhara S; Kubo H; Yamashita K; Seikoba Y; Idogawa S; Sawahata H; Yamagiwa S; Leong XLA; Numano R; Koida K; Kawano T Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33846241 [TBL] [Abstract][Full Text] [Related]
47. Simultaneous recording of the field-EPSP as well as the population spike in the CA1 region in freely moving rats by using a fixed "double"-recording electrode. Scherf T; Frey JU; Frey S J Neurosci Methods; 2010 Apr; 188(1):1-6. PubMed ID: 20105443 [TBL] [Abstract][Full Text] [Related]
48. A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats. Tseng WT; Yen CT; Tsai ML J Neurosci Methods; 2011 Oct; 201(2):368-76. PubMed ID: 21889539 [TBL] [Abstract][Full Text] [Related]
49. Multi-electrode array recordings of neuronal avalanches in organotypic cultures. Plenz D; Stewart CV; Shew W; Yang H; Klaus A; Bellay T J Vis Exp; 2011 Aug; (54):. PubMed ID: 21841767 [TBL] [Abstract][Full Text] [Related]
50. A novel tetrode microdrive for simultaneous multi-neuron recording from different regions of primate brain. Santos L; Opris I; Fuqua J; Hampson RE; Deadwyler SA J Neurosci Methods; 2012 Apr; 205(2):368-74. PubMed ID: 22326226 [TBL] [Abstract][Full Text] [Related]
51. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994 [TBL] [Abstract][Full Text] [Related]
52. Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings. Johnson MD; Franklin RK; Gibson MD; Brown RB; Kipke DR J Neurosci Methods; 2008 Sep; 174(1):62-70. PubMed ID: 18692090 [TBL] [Abstract][Full Text] [Related]
53. Large-scale recording of thalamocortical circuits: in vivo electrophysiology with the two-dimensional electronic depth control silicon probe. Fiáth R; Beregszászi P; Horváth D; Wittner L; Aarts AA; Ruther P; Neves HP; Bokor H; Acsády L; Ulbert I J Neurophysiol; 2016 Nov; 116(5):2312-2330. PubMed ID: 27535370 [TBL] [Abstract][Full Text] [Related]
54. Exploiting All Programmable SoCs in Neural Signal Analysis: A Closed-Loop Control for Large-Scale CMOS Multielectrode Arrays. Seu GP; Angotzi GN; Boi F; Raffo L; Berdondini L; Meloni P IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):839-850. PubMed ID: 29993584 [TBL] [Abstract][Full Text] [Related]
55. NeuroGrid: recording action potentials from the surface of the brain. Khodagholy D; Gelinas JN; Thesen T; Doyle W; Devinsky O; Malliaras GG; Buzsáki G Nat Neurosci; 2015 Feb; 18(2):310-5. PubMed ID: 25531570 [TBL] [Abstract][Full Text] [Related]
57. A novel high electrode count spike recording array using an 81,920 pixel transimpedance amplifier-based imaging chip. Johnson LJ; Cohen E; Ilg D; Klein R; Skeath P; Scribner DA J Neurosci Methods; 2012 Apr; 205(2):223-32. PubMed ID: 22266817 [TBL] [Abstract][Full Text] [Related]
58. Comparative Performance of Linear Multielectrode Probes and Single-Tip Electrodes for Intracortical Microstimulation and Single-Neuron Recording in Macaque Monkey. Ferroni CG; Maranesi M; Livi A; Lanzilotto M; Bonini L Front Syst Neurosci; 2017; 11():84. PubMed ID: 29187815 [TBL] [Abstract][Full Text] [Related]
59. Single-Cell Membrane Potential Fluctuations Evince Network Scale-Freeness and Quasicriticality. Johnson JK; Wright NC; Xià J; Wessel R J Neurosci; 2019 Jun; 39(24):4738-4759. PubMed ID: 30952810 [TBL] [Abstract][Full Text] [Related]
60. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms]. Šaponjić J Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]