These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 3925948)
1. Identification of oxygen nucleophiles in tetrahedral intermediates: 2H and 18O induced isotope shifts in 13C NMR spectra of pepsin-bound peptide ketone pseudosubstrates. Schmidt PG; Holladay MW; Salituro FG; Rich DH Biochem Biophys Res Commun; 1985 Jun; 129(2):597-602. PubMed ID: 3925948 [TBL] [Abstract][Full Text] [Related]
2. Determination of the structure of tetrahedral transition state analogues bound at the active site of chymotrypsin using 18O and 2H isotope shifts in the 13C NMR spectra of glyoxal inhibitors. Spink E; Hewage C; Malthouse JP Biochemistry; 2007 Nov; 46(44):12868-74. PubMed ID: 17927215 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of aspartic proteases by pepstatin and 3-methylstatine derivatives of pepstatin. Evidence for collected-substrate enzyme inhibition. Rich DH; Bernatowicz MS; Agarwal NS; Kawai M; Salituro FG; Schmidt PG Biochemistry; 1985 Jun; 24(13):3165-73. PubMed ID: 3927973 [TBL] [Abstract][Full Text] [Related]
4. NMR study of the inhibition of pepsin by glyoxal inhibitors: mechanism of tetrahedral intermediate stabilization by the aspartyl proteases. Cosgrove S; Rogers L; Hewage CM; Malthouse JP Biochemistry; 2007 Oct; 46(39):11205-15. PubMed ID: 17824620 [TBL] [Abstract][Full Text] [Related]
5. 3-hydroxy-3-methylglutaryl-coenzyme A synthase reaction intermediates: detection of a covalent tetrahedral adduct by differential isotope shift 13C nuclear magnetic resonance spectroscopy. Vinarov DA; Miziorko HM Biochemistry; 2000 Mar; 39(12):3360-8. PubMed ID: 10727229 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of analogues of the carboxyl protease inhibitor pepstatin. Effects of structure on inhibition of pepsin and renin. Rich DH; Sun ET; Ulm E J Med Chem; 1980 Jan; 23(1):27-33. PubMed ID: 6767029 [TBL] [Abstract][Full Text] [Related]
7. Biological activity of aspartic proteinase inhibitors related to pepstatin. Gunn JM; Owens RA; Liu WS; Glover GI Acta Biol Med Ger; 1981; 40(10-11):1547-53. PubMed ID: 6805191 [TBL] [Abstract][Full Text] [Related]
10. Pepstatin-derived inhibitors of aspartic proteinases. A close look at an apparent transition-state analogue inhibitor. Rich DH J Med Chem; 1985 Mar; 28(3):263-73. PubMed ID: 3882966 [No Abstract] [Full Text] [Related]
11. Purification and properties of a pepstatin-insensitive carboxyl proteinase from a gram-negative bacterium. Oda K; Sugitani M; Fukuhara K; Murao S Biochim Biophys Acta; 1987 Mar; 923(3):463-9. PubMed ID: 3548827 [TBL] [Abstract][Full Text] [Related]
12. Conformational flexibility in the active sites of aspartyl proteinases revealed by a pepstatin fragment binding to penicillopepsin. James MN; Sielecki A; Salituro F; Rich DH; Hofmann T Proc Natl Acad Sci U S A; 1982 Oct; 79(20):6137-41. PubMed ID: 6755464 [TBL] [Abstract][Full Text] [Related]
13. Determination of pepstatin-sensitive carboxyl proteases by using pepstatinyldansyldiaminopropane (dansyl-pepstatin) as an active site titrant. Yonezawa H; Uchikoba T; Kaneda M J Biochem; 1997 Aug; 122(2):294-9. PubMed ID: 9378705 [TBL] [Abstract][Full Text] [Related]
14. Studying enzyme mechanism by 13C nuclear magnetic resonance. Mackenzie NE; Malthouse JP; Scott AI Science; 1984 Aug; 225(4665):883-9. PubMed ID: 6433481 [TBL] [Abstract][Full Text] [Related]
15. Observation by 13C NMR of the EPSP synthase tetrahedral intermediate bound to the enzyme active site. Anderson KS; Sammons RD; Leo GC; Sikorski JA; Benesi AJ; Johnson KA Biochemistry; 1990 Feb; 29(6):1460-5. PubMed ID: 2334707 [TBL] [Abstract][Full Text] [Related]
16. Lower homologues of ahpatinin, aspartic protease inhibitors, from a marine Streptomyces sp. Sun Y; Takada K; Nogi Y; Okada S; Matsunaga S J Nat Prod; 2014 Jul; 77(7):1749-52. PubMed ID: 24960234 [TBL] [Abstract][Full Text] [Related]
17. Ab initio molecular dynamics-based assignment of the protonation state of pepstatin A/HIV-1 protease cleavage site. Piana S; Sebastiani D; Carloni P; Parrinello M J Am Chem Soc; 2001 Sep; 123(36):8730-7. PubMed ID: 11535077 [TBL] [Abstract][Full Text] [Related]
18. The effects of lactoyl-pepstatin and the pepsin inhibitor peptide on pig cathepsin D. Kay J; Afting EG; Aoyagi T; Dunn BM Biochem J; 1982 Jun; 203(3):795-7. PubMed ID: 7115318 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of analogues of the carboxyl protease inhibitor pepstatin. Effect of structure in subsite P3 on inhibition of pepsin. Rich DH; Bernatowicz MS J Med Chem; 1982 Jul; 25(7):791-5. PubMed ID: 6809942 [TBL] [Abstract][Full Text] [Related]
20. The structure and function of acid proteases. V. Comparative studies on the specific inhibition of acid proteases by diazoacetyl-DL-norleucine methyl ester, 1,2-epoxy-3-(p-nitrophenoxy) propane and pepstatin. Takahashi K; Chang WJ J Biochem; 1976 Sep; 80(3):497-506. PubMed ID: 10290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]