These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 39259594)
1. The role of the water contact layer on hydration and transport at solid/liquid interfaces. Gäding J; Della Balda V; Lan J; Konrad J; Iannuzzi M; Meißner RH; Tocci G Proc Natl Acad Sci U S A; 2024 Sep; 121(38):e2407877121. PubMed ID: 39259594 [TBL] [Abstract][Full Text] [Related]
2. Slip Opacity and Fast Osmotic Transport of Hydrophobes at Aqueous Interfaces with Two-Dimensional Materials. Bilichenko M; Iannuzzi M; Tocci G ACS Nano; 2024 Sep; 18(35):24118-24127. PubMed ID: 39172927 [TBL] [Abstract][Full Text] [Related]
3. Osmotic Transport at the Aqueous Graphene and hBN Interfaces: Scaling Laws from a Unified, First-Principles Description. Joly L; Meißner RH; Iannuzzi M; Tocci G ACS Nano; 2021 Sep; 15(9):15249-15258. PubMed ID: 34491721 [TBL] [Abstract][Full Text] [Related]
4. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Tocci G; Joly L; Michaelides A Nano Lett; 2014 Dec; 14(12):6872-7. PubMed ID: 25394228 [TBL] [Abstract][Full Text] [Related]
5. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
6. No confinement needed: observation of a metastable hydrophobic wetting two-layer ice on graphene. Kimmel GA; Matthiesen J; Baer M; Mundy CJ; Petrik NG; Smith RS; Dohnálek Z; Kay BD J Am Chem Soc; 2009 Sep; 131(35):12838-44. PubMed ID: 19670866 [TBL] [Abstract][Full Text] [Related]
7. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet. Rana MK; Chandra A J Chem Phys; 2013 May; 138(20):204702. PubMed ID: 23742495 [TBL] [Abstract][Full Text] [Related]
8. Diffusio-osmosis and wetting on solid surfaces: a unified description based on a virtual work principle. Clarke N; Gibbions N; Long DR Soft Matter; 2020 Apr; 16(14):3485-3497. PubMed ID: 32211702 [TBL] [Abstract][Full Text] [Related]
9. Novel and global approach of the complex and interconnected phenomena related to the contact line movement past a solid surface from hydrophobized silica gel. Suciu CV; Iwatsubo T; Yaguchi K; Ikenaga M J Colloid Interface Sci; 2005 Mar; 283(1):196-214. PubMed ID: 15694440 [TBL] [Abstract][Full Text] [Related]
10. Solvation at metal/water interfaces: An ab initio molecular dynamics benchmark of common computational approaches. Heenen HH; Gauthier JA; Kristoffersen HH; Ludwig T; Chan K J Chem Phys; 2020 Apr; 152(14):144703. PubMed ID: 32295363 [TBL] [Abstract][Full Text] [Related]
11. On the Impact of Solvation on a Au/TiO2 Nanocatalyst in Contact with Water. Farnesi Camellone M; Marx D J Phys Chem Lett; 2013 Feb; 4(3):514-8. PubMed ID: 26281748 [TBL] [Abstract][Full Text] [Related]
12. Nanosecond solvation dynamics of the hematite/liquid water interface at hybrid DFT accuracy using committee neural network potentials. Schienbein P; Blumberger J Phys Chem Chem Phys; 2022 Jun; 24(25):15365-15375. PubMed ID: 35703465 [TBL] [Abstract][Full Text] [Related]
13. Nanoscale Wetting and Energy Transmission at Solid/Liquid Interfaces. Tomko JA; Olson DH; Giri A; Gaskins JT; Donovan BF; O'Malley SM; Hopkins PE Langmuir; 2019 Feb; 35(6):2106-2114. PubMed ID: 30624942 [TBL] [Abstract][Full Text] [Related]
14. Phase Diagram of Nanoscale Water on Solid Surfaces with Various Wettabilities. Qiu H; Guo W J Phys Chem Lett; 2019 Oct; 10(20):6316-6323. PubMed ID: 31566984 [TBL] [Abstract][Full Text] [Related]
15. Size dependence of hydrophobic hydration at electrified gold/water interfaces. Serva A; Salanne M; Havenith M; Pezzotti S Proc Natl Acad Sci U S A; 2021 Apr; 118(15):. PubMed ID: 33876767 [TBL] [Abstract][Full Text] [Related]
16. Tuning Contact Angles of Aqueous Droplets on Hydrophilic and Hydrophobic Surfaces by Surfactants. Staniscia F; Guzman HV; Kanduč M J Phys Chem B; 2022 May; 126(17):3374-3384. PubMed ID: 35468298 [TBL] [Abstract][Full Text] [Related]
17. Machine Learning in Computational Surface Science and Catalysis: Case Studies on Water and Metal-Oxide Interfaces. Li X; Paier W; Paier J Front Chem; 2020; 8():601029. PubMed ID: 33425857 [TBL] [Abstract][Full Text] [Related]
18. Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations. Godawat R; Jamadagni SN; Garde S Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15119-24. PubMed ID: 19706896 [TBL] [Abstract][Full Text] [Related]
19. Unveiling Contact-Electrification Effect on Interfacial Water Oscillation. Tang Z; Lin S; Wang ZL Adv Mater; 2024 Nov; 36(44):e2407507. PubMed ID: 39210632 [TBL] [Abstract][Full Text] [Related]
20. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces. Bonthuis DJ; Netz RR J Phys Chem B; 2013 Oct; 117(39):11397-413. PubMed ID: 24063251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]