These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 39259727)
1. Utility analysis and demonstration of real-world clinical texts: A case study on Japanese cancer-related EHRs. Yada S; Nishiyama T; Wakamiya S; Kawazoe Y; Imai S; Hori S; Aramaki E PLoS One; 2024; 19(9):e0310432. PubMed ID: 39259727 [TBL] [Abstract][Full Text] [Related]
2. Automated System to Capture Patient Symptoms From Multitype Japanese Clinical Texts: Retrospective Study. Nishiyama T; Yamaguchi A; Han P; Pereira LWK; Otsuki Y; Andrade GHB; Kudo N; Yada S; Wakamiya S; Aramaki E; Takada M; Toi M JMIR Med Inform; 2024 Sep; 12():e58977. PubMed ID: 39316418 [TBL] [Abstract][Full Text] [Related]
3. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes. Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070 [TBL] [Abstract][Full Text] [Related]
4. Detecting adverse drug reactions in discharge summaries of electronic medical records using Readpeer. Tang Y; Yang J; Ang PS; Dorajoo SR; Foo B; Soh S; Tan SH; Tham MY; Ye Q; Shek L; Sung C; Tung A Int J Med Inform; 2019 Aug; 128():62-70. PubMed ID: 31160013 [TBL] [Abstract][Full Text] [Related]
5. Acronym Disambiguation in Spanish Electronic Health Narratives Using Machine Learning Techniques. Rubio-López I; Costumero R; Ambit H; Gonzalo-Martín C; Menasalvas E; Rodríguez González A Stud Health Technol Inform; 2017; 235():251-255. PubMed ID: 28423792 [TBL] [Abstract][Full Text] [Related]
6. From free-text electronic health records to structured cohorts: Onconum, an innovative methodology for real-world data mining in breast cancer. Simoulin A; Thiebaut N; Neuberger K; Ibnouhsein I; Brunel N; Viné R; Bousquet N; Latapy J; Reix N; Molière S; Lodi M; Mathelin C Comput Methods Programs Biomed; 2023 Oct; 240():107693. PubMed ID: 37453367 [TBL] [Abstract][Full Text] [Related]
7. [A customized method for information extraction from unstructured text data in the electronic medical records]. Bao XY; Huang WJ; Zhang K; Jin M; Li Y; Niu CZ Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):256-263. PubMed ID: 29643524 [TBL] [Abstract][Full Text] [Related]
8. An Electronic Health Record Text Mining Tool to Collect Real-World Drug Treatment Outcomes: A Validation Study in Patients With Metastatic Renal Cell Carcinoma. van Laar SA; Gombert-Handoko KB; Guchelaar HJ; Zwaveling J Clin Pharmacol Ther; 2020 Sep; 108(3):644-652. PubMed ID: 32575147 [TBL] [Abstract][Full Text] [Related]
9. Extracting information from the text of electronic medical records to improve case detection: a systematic review. Ford E; Carroll JA; Smith HE; Scott D; Cassell JA J Am Med Inform Assoc; 2016 Sep; 23(5):1007-15. PubMed ID: 26911811 [TBL] [Abstract][Full Text] [Related]
10. Generating real-world evidence from unstructured clinical notes to examine clinical utility of genetic tests: use case in BRCAness. Zhao Y; Weroha SJ; Goode EL; Liu H; Wang C BMC Med Inform Decis Mak; 2021 Jan; 21(1):3. PubMed ID: 33407429 [TBL] [Abstract][Full Text] [Related]
11. Extracting medication information from unstructured public health data: a demonstration on data from population-based and tertiary-based samples. Chen R; Ho JC; Lin JS BMC Med Res Methodol; 2020 Oct; 20(1):258. PubMed ID: 33059588 [TBL] [Abstract][Full Text] [Related]
12. Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing. Wulff A; Mast M; Hassler M; Montag S; Marschollek M; Jack T Methods Inf Med; 2020 Dec; 59(S 02):e64-e78. PubMed ID: 33058101 [TBL] [Abstract][Full Text] [Related]
13. Extracting Medical Information From Free-Text and Unstructured Patient-Generated Health Data Using Natural Language Processing Methods: Feasibility Study With Real-world Data. Sezgin E; Hussain SA; Rust S; Huang Y JMIR Form Res; 2023 Mar; 7():e43014. PubMed ID: 36881467 [TBL] [Abstract][Full Text] [Related]
14. MLM-based typographical error correction of unstructured medical texts for named entity recognition. Lee EB; Heo GE; Choi CM; Song M BMC Bioinformatics; 2022 Nov; 23(1):486. PubMed ID: 36384464 [TBL] [Abstract][Full Text] [Related]
15. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records. Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705 [TBL] [Abstract][Full Text] [Related]
17. Advancing Italian biomedical information extraction with transformers-based models: Methodological insights and multicenter practical application. Crema C; Buonocore TM; Fostinelli S; Parimbelli E; Verde F; Fundarò C; Manera M; Ramusino MC; Capelli M; Costa A; Binetti G; Bellazzi R; Redolfi A J Biomed Inform; 2023 Dec; 148():104557. PubMed ID: 38012982 [TBL] [Abstract][Full Text] [Related]
18. medExtractR: A targeted, customizable approach to medication extraction from electronic health records. Weeks HL; Beck C; McNeer E; Williams ML; Bejan CA; Denny JC; Choi L J Am Med Inform Assoc; 2020 Mar; 27(3):407-418. PubMed ID: 31943012 [TBL] [Abstract][Full Text] [Related]