These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 39259728)

  • 1. A comprehensive study of SARS-CoV-2 main protease (Mpro) inhibitor-resistant mutants selected in a VSV-based system.
    Costacurta F; Dodaro A; Bante D; Schöppe H; Peng JY; Sprenger B; He X; Moghadasi SA; Egger LM; Fleischmann J; Pavan M; Bassani D; Menin S; Rauch S; Krismer L; Sauerwein A; Heberle A; Rabensteiner T; Ho J; Harris RS; Stefan E; Schneider R; Dunzendorfer-Matt T; Naschberger A; Wang D; Kaserer T; Moro S; von Laer D; Heilmann E
    PLoS Pathog; 2024 Sep; 20(9):e1012522. PubMed ID: 39259728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycyrrhizic acid conjugates with amino acid methyl esters target the main protease, exhibiting antiviral activity against wild-type and nirmatrelvir-resistant SARS-CoV-2 variants.
    Le UNP; Chang YJ; Lu CH; Chen Y; Su WC; Chao ST; Baltina LA; Petrova SF; Li SR; Hung MC; Lai MMC; Baltina LA; Lin CW
    Antiviral Res; 2024 Jul; 227():105920. PubMed ID: 38821317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive study of SARS-CoV-2 main protease (M
    Costacurta F; Dodaro A; Bante D; Schöppe H; Sprenger B; Moghadasi SA; Fleischmann J; Pavan M; Bassani D; Menin S; Rauch S; Krismer L; Sauerwein A; Heberle A; Rabensteiner T; Ho J; Harris RS; Stefan E; Schneider R; Kaserer T; Moro S; von Laer D; Heilmann E
    bioRxiv; 2023 Oct; ():. PubMed ID: 37808638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly specific SARS-CoV-2 main protease (M
    Rauch S; Costacurta F; Schöppe H; Peng JY; Bante D; Erisoez EE; Sprenger B; He X; Moghadasi SA; Krismer L; Sauerwein A; Heberle A; Rabensteiner T; Wang D; Naschberger A; Dunzendorfer-Matt T; Kaserer T; von Laer D; Heilmann E
    Antiviral Res; 2024 Nov; 231():105969. PubMed ID: 39053514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of novel and highly selective SARS-CoV-2 main protease inhibitors.
    Poli ANR; Tietjen I; Nandwana NK; Cassel J; Messick TE; Register ET; Keeney F; Rajaiah R; Verma AK; Pandey K; Acharya A; Byrareddy SN; Montaner LJ; Salvino JM
    Antimicrob Agents Chemother; 2024 Oct; 68(10):e0056224. PubMed ID: 39225484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms of SARS-CoV-2 resistance to nirmatrelvir.
    Duan Y; Zhou H; Liu X; Iketani S; Lin M; Zhang X; Bian Q; Wang H; Sun H; Hong SJ; Culbertson B; Mohri H; Luck MI; Zhu Y; Liu X; Lu Y; Yang X; Yang K; Sabo Y; Chavez A; Goff SP; Rao Z; Ho DD; Yang H
    Nature; 2023 Oct; 622(7982):376-382. PubMed ID: 37696289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and virologic mechanism of the emergence of resistance to M
    Hattori SI; Bulut H; Hayashi H; Kishimoto N; Takamune N; Hasegawa K; Furusawa Y; Yamayoshi S; Murayama K; Tamamura H; Li M; Wlodawer A; Kawaoka Y; Misumi S; Mitsuya H
    Proc Natl Acad Sci U S A; 2024 Sep; 121(37):e2404175121. PubMed ID: 39236245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replication capacity and susceptibility of nirmatrelvir-resistant mutants to next-generation Mpro inhibitors in a SARS-CoV-2 replicon system.
    Lo CW; Kariv O; Hao C; Gammeltoft KA; Bukh J; Gottwein J; Westberg M; Lin MZ; Einav S
    Antiviral Res; 2024 Nov; 231():106022. PubMed ID: 39424074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in SARS-CoV-2 Main Protease Inhibitors: From Nirmatrelvir to Future Perspectives.
    Citarella A; Dimasi A; Moi D; Passarella D; Scala A; Piperno A; Micale N
    Biomolecules; 2023 Sep; 13(9):. PubMed ID: 37759739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of SARS-CoV-2 Main Protease Mutations at Positions L50, E166, and L167 Rendering Resistance to Covalent and Noncovalent Inhibitors.
    Kovalevsky A; Aniana A; Ghirlando R; Coates L; Drago VN; Wear L; Gerlits O; Nashed NT; Louis JM
    J Med Chem; 2024 Oct; 67(20):18478-18490. PubMed ID: 39370853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Surveillance of SARS-CoV-2 M
    Lee JT; Yang Q; Gribenko A; Perrin BS; Zhu Y; Cardin R; Liberator PA; Anderson AS; Hao L
    mBio; 2022 Aug; 13(4):e0086922. PubMed ID: 35862764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical insights into the binding interaction of Nirmatrelvir with SARS-CoV-2 Mpro mutants (C145A and C145S): MD simulations and binding free-energy calculation to understand drug resistance.
    Purohit P; Panda M; Muya JT; Bandyopadhyay P; Meher BR
    J Biomol Struct Dyn; 2024 Oct; 42(17):8865-8884. PubMed ID: 37599474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substitutions in SARS-CoV-2 Mpro Selected by Protease Inhibitor Boceprevir Confer Resistance to Nirmatrelvir.
    Gammeltoft KA; Zhou Y; Ryberg LA; Pham LV; Binderup A; Hernandez CRD; Offersgaard A; Fahnøe U; Peters GHJ; Ramirez S; Bukh J; Gottwein JM
    Viruses; 2023 Sep; 15(9):. PubMed ID: 37766376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SARS-CoV-2 3CL
    Heilmann E; Costacurta F; Moghadasi SA; Ye C; Pavan M; Bassani D; Volland A; Ascher C; Weiss AKH; Bante D; Harris RS; Moro S; Rupp B; Martinez-Sobrido L; von Laer D
    Sci Transl Med; 2023 Jan; 15(678):eabq7360. PubMed ID: 36194133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Silico Comparative Analysis of Ivermectin and Nirmatrelvir Inhibitors Interacting with the SARS-CoV-2 Main Protease.
    de Oliveira Só YA; Bezerra KS; Gargano R; Mendonça FLL; Souto JT; Fulco UL; Pereira Junior ML; Junior LAR
    Biomolecules; 2024 Jun; 14(7):. PubMed ID: 39062468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An automated positive selection screen in yeast provides support for boron-containing compounds as inhibitors of SARS-CoV-2 main protease.
    Sigurdardóttir S; Silva SF; Tiukova I; Alalam H; King RD; Grøtli M; Eriksson LA; Sunnerhagen P
    Microbiol Spectr; 2024 Oct; 12(10):e0124924. PubMed ID: 39162260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Insights into SARS-CoV-2 Main Protease Mutations and Nirmatrelvir Efficacy: The Effects of P132H and P132H-A173V.
    Xia YL; Du WW; Li YP; Tao Y; Zhang ZB; Liu SM; Fu YX; Zhang KQ; Liu SQ
    J Chem Inf Model; 2024 Jul; 64(13):5207-5218. PubMed ID: 38913174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro selection and analysis of SARS-CoV-2 nirmatrelvir resistance mutations contributing to clinical virus resistance surveillance.
    Zhu Y; Yurgelonis I; Noell S; Yang Q; Guan S; Li Z; Hao L; Rothan H; Rai DK; McMonagle P; Baniecki ML; Greasley SE; Plotnikova O; Lee J; Nicki JA; Ferre R; Byrnes LJ; Liu W; Craig TK; Steppan CM; Liberator P; Soares HD; Allerton CMN; Anderson AS; Cardin RD
    Sci Adv; 2024 Jul; 10(30):eadl4013. PubMed ID: 39047088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pomotrelvir and Nirmatrelvir Binding and Reactivity with SARS-CoV-2 Main Protease: Implications for Resistance Mechanisms from Computations.
    Schillings J; Ramos-Guzmán CA; Ruiz-Pernía JJ; Tuñón I
    Angew Chem Int Ed Engl; 2024 Oct; 63(40):e202409527. PubMed ID: 38959351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is PF-00835231 a Pan-SARS-CoV-2 Mpro Inhibitor? A Comparative Study.
    Baig MH; Sharma T; Ahmad I; Abohashrh M; Alam MM; Dong JJ
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33802860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.