These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 39259775)

  • 1. An Integrated Experimental and Modeling Approach for Assessing High-Temperature Decomposition Kinetics of Explosives.
    Manner VW; Cawkwell MJ; Spielvogel KD; Tasker DG; Rose JW; Aloi M; Tucker R; Moore JD; Campbell MC; Aslam TD
    J Am Chem Soc; 2024 Sep; 146(38):26286-26296. PubMed ID: 39259775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ranking the Drop-Weight Impact Sensitivity of Common Explosives Using Arrhenius Chemical Rates Computed from Quantum Molecular Dynamics Simulations.
    Cawkwell MJ; Manner VW
    J Phys Chem A; 2020 Jan; 124(1):74-81. PubMed ID: 31841343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding Explosive Sensitivity with Effective Trigger Linkage Kinetics.
    Cawkwell MJ; Davis J; Lease N; Marrs FW; Burch A; Ferreira S; Manner VW
    ACS Phys Chem Au; 2022 Sep; 2(5):448-458. PubMed ID: 36855691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of global kinetic models to HMX beta-delta transition and cookoff processes.
    Wemhoff AP; Burnham AK; Nichols AL
    J Phys Chem A; 2007 Mar; 111(9):1575-84. PubMed ID: 17288408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying the Molecular Properties that Drive Explosive Sensitivity in a Series of Nitrate Esters.
    Lease N; Klamborowski LM; Perriot R; Cawkwell MJ; Manner VW
    J Phys Chem Lett; 2022 Oct; 13(40):9422-9428. PubMed ID: 36191261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An updated technique to obtain explosive kinetics data on microsecond timescales.
    Tasker DG; Skrabacz DA; Campbell MC; Spielvogel KD; Morinec AG; McLaughlin AB; Houlton R; Tucker R; Moore JD; Cawkwell MJ; Manner VW
    Rev Sci Instrum; 2024 Jul; 95(7):. PubMed ID: 39037303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite.
    Gunawan R; Zhang D
    J Hazard Mater; 2009 Jun; 165(1-3):751-8. PubMed ID: 19056177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations.
    Zhang L; Zybin SV; van Duin AC; Dasgupta S; Goddard WA; Kober EM
    J Phys Chem A; 2009 Oct; 113(40):10619-40. PubMed ID: 19791809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, non-isothermal decomposition kinetics, heat capacity and adiabatic time-to-explosion of NTOxDNAZ.
    Ma H; Yan B; Li Z; Guan Y; Song J; Xu K; Hu R
    J Hazard Mater; 2009 Sep; 169(1-3):1068-73. PubMed ID: 19446396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of polymer matrices on the thermal hazard properties of RDX-based PBXs by using model-free and combined kinetic analysis.
    Yan QL; Zeman S; Sánchez Jiménez PE; Zhao FQ; Pérez-Maqueda LA; Málek J
    J Hazard Mater; 2014 Apr; 271():185-95. PubMed ID: 24657941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decomposition mechanisms and kinetics of novel energetic molecules BNFF-1 and ANFF-1: quantum-chemical modeling.
    Tsyshevsky RV; Kuklja MM
    Molecules; 2013 Jul; 18(7):8500-17. PubMed ID: 23873388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new computer code to evaluate detonation performance of high explosives and their thermochemical properties, part I.
    Keshavarz MH; Motamedoshariati H; Moghayadnia R; Nazari HR; Azarniamehraban J
    J Hazard Mater; 2009 Dec; 172(2-3):1218-28. PubMed ID: 19713037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decomposition and Energy-Enhancement Mechanism of the Energetic Binder Glycidyl Azide Polymer at Explosive Detonation Temperatures.
    Liu D; Geng D; Yang K; Lu J; Chan SHY; Chen C; Hng HH; Chen L
    J Phys Chem A; 2020 Jul; 124(27):5542-5554. PubMed ID: 32436383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Theory of Detonation Initiation: Insight from First Principles Modeling of the Decomposition Mechanisms of Organic Nitro Energetic Materials.
    Tsyshevsky RV; Sharia O; Kuklja MM
    Molecules; 2016 Feb; 21(2):236. PubMed ID: 26907231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The simplest method for calculating energy output and Gurney velocity of explosives.
    Keshavarz MH; Semnani A
    J Hazard Mater; 2006 Apr; 131(1-3):1-5. PubMed ID: 16236438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An LX-10 kinetic model calibrated using simulations of multiple small-scale thermal safety tests.
    Wemhoff AP; Howard WM; Burnham AK; Nichols AL
    J Phys Chem A; 2008 Sep; 112(38):9005-11. PubMed ID: 18759420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semiempirical equations for modeling solid-state kinetics based on a Maxwell-Boltzmann distribution of activation energies: applications to a polymorphic transformation under crystallization slurry conditions and to the thermal decomposition of AgMnO4 crystals.
    Skrdla PJ; Robertson RT
    J Phys Chem B; 2005 Jun; 109(21):10611-9. PubMed ID: 16852288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction Rates in Nitromethane under High Pressure from Density Functional Tight Binding Molecular Dynamics Simulations.
    Perriot R; Cawkwell MJ; Martinez E; McGrane SD
    J Phys Chem A; 2020 Apr; 124(17):3314-3328. PubMed ID: 32227951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.