These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 3925989)
21. The closed and compact domain organization of the 70-kDa human cytochrome P450 reductase in its oxidized state as revealed by NMR. Vincent B; Morellet N; Fatemi F; Aigrain L; Truan G; Guittet E; Lescop E J Mol Biol; 2012 Jul; 420(4-5):296-309. PubMed ID: 22543241 [TBL] [Abstract][Full Text] [Related]
22. Redox properties of the isolated flavin mononucleotide- and flavin adenine dinucleotide-binding domains of neuronal nitric oxide synthase. Garnaud PE; Koetsier M; Ost TW; Daff S Biochemistry; 2004 Aug; 43(34):11035-44. PubMed ID: 15323562 [TBL] [Abstract][Full Text] [Related]
25. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Murataliev MB; Klein M; Fulco A; Feyereisen R Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888 [TBL] [Abstract][Full Text] [Related]
26. Tryptophan 697 modulates hydride and interflavin electron transfer in human methionine synthase reductase. Meints CE; Gustafsson FS; Scrutton NS; Wolthers KR Biochemistry; 2011 Dec; 50(51):11131-42. PubMed ID: 22097960 [TBL] [Abstract][Full Text] [Related]
27. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry. Wolthers KR; Scrutton NS Biochemistry; 2004 Jan; 43(2):490-500. PubMed ID: 14717604 [TBL] [Abstract][Full Text] [Related]
28. Structural and Kinetic Studies of Asp632 Mutants and Fully Reduced NADPH-Cytochrome P450 Oxidoreductase Define the Role of Asp632 Loop Dynamics in the Control of NADPH Binding and Hydride Transfer. Xia C; Rwere F; Im S; Shen AL; Waskell L; Kim JP Biochemistry; 2018 Feb; 57(6):945-962. PubMed ID: 29308883 [TBL] [Abstract][Full Text] [Related]
29. Electron transfer by human wild-type and A287P mutant P450 oxidoreductase assessed by transient kinetics: functional basis of P450 oxidoreductase deficiency. Jin Y; Chen M; Penning TM; Miller WL Biochem J; 2015 May; 468(1):25-31. PubMed ID: 25728647 [TBL] [Abstract][Full Text] [Related]
30. Mechanistic studies on the intramolecular one-electron transfer between the two flavins in the human endothelial NOS reductase domain. Nishino Y; Yamamoto K; Kimura S; Kikuchi A; Shiro Y; Iyanagi T Arch Biochem Biophys; 2007 Sep; 465(1):254-65. PubMed ID: 17610838 [TBL] [Abstract][Full Text] [Related]
31. Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors. Murataliev MB; Feyereisen R Biochemistry; 2000 Oct; 39(41):12699-707. PubMed ID: 11027150 [TBL] [Abstract][Full Text] [Related]
32. Localization of the free radical on the flavin mononucleotide of the air-stable semiquinone state of NADPH-cytochrome P-450 reductase using 31P NMR spectroscopy. Otvos JD; Krum DP; Masters BS Biochemistry; 1986 Nov; 25(22):7220-8. PubMed ID: 3099832 [TBL] [Abstract][Full Text] [Related]
33. Preparation and characterization of a 5'-deazaFAD T491V NADPH-cytochrome P450 reductase. Zhang H; Gruenke L; Saribas AS; Im SC; Shen AL; Kasper CB; Waskell L Biochemistry; 2003 Jun; 42(22):6804-13. PubMed ID: 12779335 [TBL] [Abstract][Full Text] [Related]
34. Relaxation kinetics of cytochrome P450 reductase: internal electron transfer is limited by conformational change and regulated by coenzyme binding. Gutierrez A; Paine M; Wolf CR; Scrutton NS; Roberts GC Biochemistry; 2002 Apr; 41(14):4626-37. PubMed ID: 11926825 [TBL] [Abstract][Full Text] [Related]
35. Flavin-binding and protein structural integrity studies on NADPH-cytochrome P450 reductase are consistent with the presence of distinct domains. Narayanasami R; Horowitz PM; Masters BS Arch Biochem Biophys; 1995 Jan; 316(1):267-74. PubMed ID: 7840627 [TBL] [Abstract][Full Text] [Related]
36. Resonance Raman study on the oxidized and anionic semiquinone forms of flavocytochrome b2 and L-lactate monooxygenase. Influence of the structure and environment of the isoalloxazine ring on the flavin function. Tegoni M; Gervais M; Desbois A Biochemistry; 1997 Jul; 36(29):8932-46. PubMed ID: 9220981 [TBL] [Abstract][Full Text] [Related]
38. Determination of the midpoint potential of the FAD and FMN flavin cofactors and of the 3Fe-4S cluster of glutamate synthase. Ravasio S; Curti B; Vanoni MA Biochemistry; 2001 May; 40(18):5533-41. PubMed ID: 11331018 [TBL] [Abstract][Full Text] [Related]
39. Mutants of Cytochrome P450 Reductase Lacking Either Gly-141 or Gly-143 Destabilize Its FMN Semiquinone. Rwere F; Xia C; Im S; Haque MM; Stuehr DJ; Waskell L; Kim JJ J Biol Chem; 2016 Jul; 291(28):14639-61. PubMed ID: 27189945 [TBL] [Abstract][Full Text] [Related]
40. A second FMN binding site in yeast NADPH-cytochrome P450 reductase suggests a mechanism of electron transfer by diflavin reductases. Lamb DC; Kim Y; Yermalitskaya LV; Yermalitsky VN; Lepesheva GI; Kelly SL; Waterman MR; Podust LM Structure; 2006 Jan; 14(1):51-61. PubMed ID: 16407065 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]