These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 39261637)

  • 1. FOS mapping reveals two complementary circuits for spatial navigation in mouse.
    Balcerek E; Włodkowska U; Czajkowski R
    Sci Rep; 2024 Sep; 14(1):21252. PubMed ID: 39261637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shifting between response and place strategies in maze navigation: Effects of training, cue availability and functional inactivation of striatum or hippocampus in rats.
    Gasser J; Pereira de Vasconcelos A; Cosquer B; Boutillier AL; Cassel JC
    Neurobiol Learn Mem; 2020 Jan; 167():107131. PubMed ID: 31783128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complementary Roles of the Hippocampus and the Dorsomedial Striatum during Spatial and Sequence-Based Navigation Behavior.
    Fouquet C; Babayan BM; Watilliaux A; Bontempi B; Tobin C; Rondi-Reig L
    PLoS One; 2013; 8(6):e67232. PubMed ID: 23826243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encoding and storage of spatial information in the retrosplenial cortex.
    Czajkowski R; Jayaprakash B; Wiltgen B; Rogerson T; Guzman-Karlsson MC; Barth AL; Trachtenberg JT; Silva AJ
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8661-6. PubMed ID: 24912150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conjunctive processing of spatial border and locomotion in retrosplenial cortex during spatial navigation.
    Sun H; Cai R; Li R; Li M; Gao L; Li X
    J Physiol; 2024 Oct; 602(19):5017-5038. PubMed ID: 39216077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordinated prefrontal-hippocampal activity and navigation strategy-related prefrontal firing during spatial memory formation.
    Negrón-Oyarzo I; Espinosa N; Aguilar-Rivera M; Fuenzalida M; Aboitiz F; Fuentealba P
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):7123-7128. PubMed ID: 29915053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opposing effects of cortisol on learning and memory in children using spatial versus response-dependent navigation strategies.
    Blanchette CA; Kurdi V; Fouquet C; Schachar R; Boivin M; Hastings P; Robaey P; West GL; Bohbot VD
    Neurobiol Learn Mem; 2020 Mar; 169():107172. PubMed ID: 31978550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-resolution study of hippocampal and medial temporal lobe correlates of spatial context and prospective overlapping route memory.
    Brown TI; Hasselmo ME; Stern CE
    Hippocampus; 2014 Jul; 24(7):819-39. PubMed ID: 24659134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ventral hippocampus is involved in multi-goal obstacle-rich spatial navigation.
    Contreras M; Pelc T; Llofriu M; Weitzenfeld A; Fellous JM
    Hippocampus; 2018 Dec; 28(12):853-866. PubMed ID: 30067283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Close but no cigar: Spatial precision deficits following medial temporal lobe lesions provide novel insight into theoretical models of navigation and memory.
    Kolarik BS; Baer T; Shahlaie K; Yonelinas AP; Ekstrom AD
    Hippocampus; 2018 Jan; 28(1):31-41. PubMed ID: 28888032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hippocampal and anterior cingulate cortex contribution to the processing of recently-acquired and remotely stored spatial memories in rats trained during preadolescence.
    Tzakis N; Bosnic T; Holahan MR
    Neurobiol Learn Mem; 2020 Sep; 173():107271. PubMed ID: 32565407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hippocampal and Retrosplenial Goal Distance Coding After Long-term Consolidation of a Real-World Environment.
    Patai EZ; Javadi AH; Ozubko JD; O'Callaghan A; Ji S; Robin J; Grady C; Winocur G; Rosenbaum RS; Moscovitch M; Spiers HJ
    Cereb Cortex; 2019 Jun; 29(6):2748-2758. PubMed ID: 30916744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased training compensates for OX1R blockage-impairment of spatial memory and c-Fos expression in different cortical and subcortical areas.
    García-Brito S; Aldavert-Vera L; Huguet G; Álvarez A; Kádár E; Segura-Torres P
    Behav Brain Res; 2018 Nov; 353():21-31. PubMed ID: 29953904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retrosplenial Cortical Neurons Encode Navigational Cues, Trajectories and Reward Locations During Goal Directed Navigation.
    Vedder LC; Miller AMP; Harrison MB; Smith DM
    Cereb Cortex; 2017 Jul; 27(7):3713-3723. PubMed ID: 27473323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hippocampal activation during the recall of remote spatial memories in radial maze tasks.
    Schlesiger MI; Cressey JC; Boublil B; Koenig J; Melvin NR; Leutgeb JK; Leutgeb S
    Neurobiol Learn Mem; 2013 Nov; 106():324-33. PubMed ID: 23742919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits?
    Aggleton JP; Nelson AJ
    Neurosci Biobehav Rev; 2015 Jul; 54():131-44. PubMed ID: 25195980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Search strategy selection in the Morris water maze indicates allocentric map formation during learning that underpins spatial memory formation.
    Rogers J; Churilov L; Hannan AJ; Renoir T
    Neurobiol Learn Mem; 2017 Mar; 139():37-49. PubMed ID: 27988312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial memory extinction: a c-Fos protein mapping study.
    Méndez-Couz M; Conejo NM; Vallejo G; Arias JL
    Behav Brain Res; 2014 Mar; 260():101-10. PubMed ID: 24315832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Representation of visual landmarks in retrosplenial cortex.
    Fischer LF; Mojica Soto-Albors R; Buck F; Harnett MT
    Elife; 2020 Mar; 9():. PubMed ID: 32154781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-Factor Representation of the Environmental Context in the Retrosplenial Cortex.
    Miller AMP; Serrichio AC; Smith DM
    Cereb Cortex; 2021 Mar; 31(5):2720-2728. PubMed ID: 33386396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.