These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59. Khersonsky O; Kiss G; Röthlisberger D; Dym O; Albeck S; Houk KN; Baker D; Tawfik DS Proc Natl Acad Sci U S A; 2012 Jun; 109(26):10358-63. PubMed ID: 22685214 [TBL] [Abstract][Full Text] [Related]
8. Optimization of reorganization energy drives evolution of the designed Kemp eliminase KE07. Labas A; Szabo E; Mones L; Fuxreiter M Biochim Biophys Acta; 2013 May; 1834(5):908-17. PubMed ID: 23380188 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series. Khersonsky O; Röthlisberger D; Dym O; Albeck S; Jackson CJ; Baker D; Tawfik DS J Mol Biol; 2010 Mar; 396(4):1025-42. PubMed ID: 20036254 [TBL] [Abstract][Full Text] [Related]
10. Efficient Base-Catalyzed Kemp Elimination in an Engineered Ancestral Enzyme. Gutierrez-Rus LI; Alcalde M; Risso VA; Sanchez-Ruiz JM Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012203 [TBL] [Abstract][Full Text] [Related]
11. The Importance of the Scaffold for de Novo Enzymes: A Case Study with Kemp Eliminase. Bhowmick A; Sharma SC; Head-Gordon T J Am Chem Soc; 2017 Apr; 139(16):5793-5800. PubMed ID: 28383910 [TBL] [Abstract][Full Text] [Related]
12. Revealing the Origin of the Efficiency of the De Novo Designed Kemp Eliminase HG-3.17 by Comparison with the Former Developed HG-3. Świderek K; Tuñón I; Moliner V; Bertran J Chemistry; 2017 Jun; 23(31):7582-7589. PubMed ID: 28334464 [TBL] [Abstract][Full Text] [Related]
13. Exploring the Development of Ground-State Destabilization and Transition-State Stabilization in Two Directed Evolution Paths of Kemp Eliminases. Jindal G; Ramachandran B; Bora RP; Warshel A ACS Catal; 2017 May; 7(5):3301-3305. PubMed ID: 29082065 [TBL] [Abstract][Full Text] [Related]
14. A preorganization oriented computational method for de novo design of Kemp elimination enzymes. Zhang S; Zhang J; Luo W; Wang P; Zhu Y Enzyme Microb Technol; 2022 Oct; 160():110093. PubMed ID: 35816919 [TBL] [Abstract][Full Text] [Related]
15. Evolution of dynamical networks enhances catalysis in a designer enzyme. Bunzel HA; Anderson JLR; Hilvert D; Arcus VL; van der Kamp MW; Mulholland AJ Nat Chem; 2021 Oct; 13(10):1017-1022. PubMed ID: 34413499 [TBL] [Abstract][Full Text] [Related]
16. Tuning the Catalytic Activity of Synthetic Enzyme KE15 with DNA. Zheng Y; Vaissier Welborn V J Phys Chem B; 2022 May; 126(18):3407-3413. PubMed ID: 35483007 [TBL] [Abstract][Full Text] [Related]
18. Exploring challenges in rational enzyme design by simulating the catalysis in artificial kemp eliminase. Frushicheva MP; Cao J; Chu ZT; Warshel A Proc Natl Acad Sci U S A; 2010 Sep; 107(39):16869-74. PubMed ID: 20829491 [TBL] [Abstract][Full Text] [Related]
20. Rational evolutionary design: the theory of in vitro protein evolution. Voigt CA; Kauffman S; Wang ZG Adv Protein Chem; 2000; 55():79-160. PubMed ID: 11050933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]