These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 39261825)
1. TMEM100 acts as a TAK1 receptor that prevents pathological cardiac hypertrophy progression. Zhang BB; Zhao YL; Lu YY; Shen JH; Li HY; Zhang HX; Yu XY; Zhang WC; Li G; Han ZY; Guo S; Zhang XT Cell Commun Signal; 2024 Sep; 22(1):438. PubMed ID: 39261825 [TBL] [Abstract][Full Text] [Related]
2. SWAP70 Overexpression Protects Against Pathological Cardiac Hypertrophy in a TAK1-Dependent Manner. Qian Q; Hu F; Yu W; Leng D; Li Y; Shi H; Deng D; Ding K; Liang C; Liu J J Am Heart Assoc; 2023 Apr; 12(7):e028628. PubMed ID: 36974751 [TBL] [Abstract][Full Text] [Related]
3. TBC1D25 Regulates Cardiac Remodeling Through TAK1 Signaling Pathway. Guo S; Liu Y; Gao L; Xiao F; Shen J; Xing S; Yang F; Zhang W; Shi Q; Li Y; Zhao L Int J Biol Sci; 2020; 16(8):1335-1348. PubMed ID: 32210723 [TBL] [Abstract][Full Text] [Related]
4. Mixed lineage kinase-3 prevents cardiac dysfunction and structural remodeling with pressure overload. Calamaras TD; Baumgartner RA; Aronovitz MJ; McLaughlin AL; Tam K; Richards DA; Cooper CW; Li N; Baur WE; Qiao X; Wang GR; Davis RJ; Kapur NK; Karas RH; Blanton RM Am J Physiol Heart Circ Physiol; 2019 Jan; 316(1):H145-H159. PubMed ID: 30362822 [TBL] [Abstract][Full Text] [Related]
5. FBXW5 acts as a negative regulator of pathological cardiac hypertrophy by decreasing the TAK1 signaling to pro-hypertrophic members of the MAPK signaling pathway. Hui X; Hu F; Liu J; Li C; Yang Y; Shu S; Liu P; Wang F; Li S J Mol Cell Cardiol; 2021 Feb; 151():31-43. PubMed ID: 32971071 [TBL] [Abstract][Full Text] [Related]
6. Ubiquitin-specific protease 19 blunts pathological cardiac hypertrophy via inhibition of the TAK1-dependent pathway. Miao R; Lu Y; He X; Liu X; Chen Z; Wang J J Cell Mol Med; 2020 Sep; 24(18):10946-10957. PubMed ID: 32798288 [TBL] [Abstract][Full Text] [Related]
7. GCN5-mediated regulation of pathological cardiac hypertrophy via activation of the TAK1-JNK/p38 signaling pathway. Li J; Yan C; Wang Y; Chen C; Yu H; Liu D; Huang K; Han Y Cell Death Dis; 2022 Apr; 13(4):421. PubMed ID: 35490166 [TBL] [Abstract][Full Text] [Related]
8. Salidroside ameliorates pathological cardiac hypertrophy via TLR4-TAK1-dependent signaling. Guo Z; Liu FY; Yang D; Wang MY; Li CF; Tang N; Ma SQ; An P; Yang Z; Tang QZ Phytother Res; 2023 May; 37(5):1839-1849. PubMed ID: 36512326 [TBL] [Abstract][Full Text] [Related]
9. Loss of TRADD attenuates pressure overload-induced cardiac hypertrophy through regulating TAK1/P38 MAPK signalling in mice. Wu L; Cao Z; Ji L; Mei L; Jin Q; Zeng J; Lin J; Chu M; Li L; Yang X Biochem Biophys Res Commun; 2017 Feb; 483(2):810-815. PubMed ID: 28013046 [TBL] [Abstract][Full Text] [Related]
10. RNF13 protects against pathological cardiac hypertrophy through p62-NRF2 pathway. Guo S; Zhang BB; Gao L; Yu XY; Shen JH; Yang F; Zhang WC; Jin YG; Li G; Wang YG; Han ZY; Liu Y Free Radic Biol Med; 2023 Nov; 209(Pt 2):252-264. PubMed ID: 37852547 [TBL] [Abstract][Full Text] [Related]
11. TNIP3 protects against pathological cardiac hypertrophy by stabilizing STAT1. Shi H; Yu Y; Li D; Zhu K; Cheng X; Ma T; Tao Z; Hong Y; Liu Z; Zhou S; Zhang J; Chen Y; Zhang XJ; Zhang P; Li H Cell Death Dis; 2024 Jun; 15(6):450. PubMed ID: 38926347 [TBL] [Abstract][Full Text] [Related]
12. Myricetin Alleviates Pathological Cardiac Hypertrophy via TRAF6/TAK1/MAPK and Nrf2 Signaling Pathway. Liao HH; Zhang N; Meng YY; Feng H; Yang JJ; Li WJ; Chen S; Wu HM; Deng W; Tang QZ Oxid Med Cell Longev; 2019; 2019():6304058. PubMed ID: 31885808 [TBL] [Abstract][Full Text] [Related]
13. C1q-tumour necrosis factor-related protein-3 exacerbates cardiac hypertrophy in mice. Ma ZG; Yuan YP; Zhang X; Xu SC; Kong CY; Song P; Li N; Tang QZ Cardiovasc Res; 2019 May; 115(6):1067-1077. PubMed ID: 30407523 [TBL] [Abstract][Full Text] [Related]
14. C1q-TNF-related protein-3 attenuates pressure overload-induced cardiac hypertrophy by suppressing the p38/CREB pathway and p38-induced ER stress. Zhang B; Zhang P; Tan Y; Feng P; Zhang Z; Liang H; Duan W; Jin Z; Wang X; Liu J; Gao E; Yu S; Yi D; Sun Y; Yi W Cell Death Dis; 2019 Jul; 10(7):520. PubMed ID: 31285424 [TBL] [Abstract][Full Text] [Related]
15. Sialyltransferase7A promotes angiotensin II-induced cardiomyocyte hypertrophy via HIF-1α-TAK1 signalling pathway. Yan X; Zhao R; Feng X; Mu J; Li Y; Chen Y; Li C; Yao Q; Cai L; Jin L; Han C; Zhang D Cardiovasc Res; 2020 Jan; 116(1):114-126. PubMed ID: 30854566 [TBL] [Abstract][Full Text] [Related]
16. Novel role of mitochondrial GTPases 1 in pathological cardiac hypertrophy. Xu D; Zhao Y; Weng X; Lu Y; Li W; Tang K; Chen W; Liu Z; Qi X; Zheng J; Fassett J; Zhang Y; Xu Y J Mol Cell Cardiol; 2019 Mar; 128():105-116. PubMed ID: 30707992 [TBL] [Abstract][Full Text] [Related]
17. JNK signaling-dependent regulation of histone acetylation are involved in anacardic acid alleviates cardiomyocyte hypertrophy induced by phenylephrine. Peng B; Peng C; Luo X; Wu S; Mao Q; Zhang H; Han X PLoS One; 2021; 16(12):e0261388. PubMed ID: 34914791 [TBL] [Abstract][Full Text] [Related]
18. MG53, A Novel Regulator of KChIP2 and I Liu W; Wang G; Zhang C; Ding W; Cheng W; Luo Y; Wei C; Liu J Circulation; 2019 Apr; 139(18):2142-2156. PubMed ID: 30760025 [TBL] [Abstract][Full Text] [Related]
19. TAK1 Regulates Myocardial Response to Pathological Stress via NFAT, NFκB, and Bnip3 Pathways. Li L; Chen Y; Li J; Yin H; Guo X; Doan J; Molkentin JD; Liu Q Sci Rep; 2015 Nov; 5():16626. PubMed ID: 26564789 [TBL] [Abstract][Full Text] [Related]
20. Tripartite Motif 8 Contributes to Pathological Cardiac Hypertrophy Through Enhancing Transforming Growth Factor β-Activated Kinase 1-Dependent Signaling Pathways. Chen L; Huang J; Ji YX; Mei F; Wang PX; Deng KQ; Jiang X; Ma G; Li H Hypertension; 2017 Feb; 69(2):249-258. PubMed ID: 27956576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]