These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39262088)
1. Heterogeneous Nucleation Regulation Amends Unfavorable Crystallization Orientation and Defect Features of Antimony Selenosulfide Film for High-Efficient Planar Solar Cells. Ren D; Li C; Xiong J; Liang W; Cathelinaud M; Zhang X; Chen S; Li Z; Pan D; Liang G; Zou B Angew Chem Int Ed Engl; 2024 Sep; ():e202413108. PubMed ID: 39262088 [TBL] [Abstract][Full Text] [Related]
2. Crystal Growth Promotion and Defect Passivation by Hydrothermal and Selenized Deposition for Substrate-Structured Antimony Selenosulfide Solar Cells. Chen GJ; Tang R; Chen S; Zheng ZH; Su ZH; Ma HL; Zhang XH; Fan P; Liang GX ACS Appl Mater Interfaces; 2022 Jul; 14(28):31986-31997. PubMed ID: 35793154 [TBL] [Abstract][Full Text] [Related]
3. Additive-Assisted Hydrothermal Growth Enabling Defect Passivation and Void Remedy in Antimony Selenosulfide Solar Cells. Ji S; Wang Y; Hwang J; Chu J; Kim K; Jung HJ; Shin B Small; 2024 Sep; 20(38):e2402935. PubMed ID: 38809078 [TBL] [Abstract][Full Text] [Related]
4. Temperature-Gradient Solution Deposition Amends Unfavorable Band Structure of Sb Huang L; Dong J; Hu Y; Yang J; Peng X; Wang H; Liu A; Dong Y; Wang H; Zhu C; Tang R; Zhang Y; Chen T Angew Chem Int Ed Engl; 2024 Sep; 63(36):e202406512. PubMed ID: 38899603 [TBL] [Abstract][Full Text] [Related]
5. KCl Treatment of CdS Electron-Transporting Layer for Improved Performance of Sb Liu A; Tang R; Huang L; Xiao P; Dong Y; Zhu C; Wang H; Hu L; Chen T ACS Appl Mater Interfaces; 2023 Oct; 15(41):48147-48153. PubMed ID: 37793191 [TBL] [Abstract][Full Text] [Related]
6. Over 10% Efficient Sb Zhang L; Zheng J; Liu C; Xie Y; Lu H; Luo Q; Liu Y; Yang H; Shen K; Mai Y Small; 2024 Jul; 20(27):e2310418. PubMed ID: 38267816 [TBL] [Abstract][Full Text] [Related]
7. Low-Cost Antimony Selenosulfide with Tunable Bandgap for Highly Efficient Solar Cells. Dong J; Liu H; Cao Z; Liu Y; Bai Y; Chen M; Liu B; Wu L; Luo J; Zhang Y; Liu SF Small; 2023 Mar; 19(9):e2206175. PubMed ID: 36534834 [TBL] [Abstract][Full Text] [Related]
8. Se-Elemental Concentration Gradient Regulation for Efficient Sb Chen J; Xu C; Li G; Xu Z; Wang Y; Zhang Y; Chen C; Wang M; He L; Xu J Angew Chem Int Ed Engl; 2024 Oct; 63(40):e202409609. PubMed ID: 38976376 [TBL] [Abstract][Full Text] [Related]
9. Hydrazine Hydrate-Induced Surface Modification of CdS Electron Transport Layer Enables 10.30%-Efficient Sb Li J; Zhao Y; Li C; Wang S; Chen X; Gong J; Wang X; Xiao X Adv Sci (Weinh); 2022 Sep; 9(25):2202356. PubMed ID: 36093410 [TBL] [Abstract][Full Text] [Related]
10. Innovative In Situ Passivation Strategy for High-Efficiency Sb Zhao Y; Xu W; Wen J; Wang X; Chen X; Che B; Wang H; Gong J; Chen T; Xiao X; Li J Adv Mater; 2024 Nov; 36(46):e2410669. PubMed ID: 39328030 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic Study of the Transition from Antimony Oxide to Antimony Sulfide in the Hydrothermal Process to Obtain Highly Efficient Solar Cells. Zhang L; Xiao P; Che B; Yang J; Cai Z; Wang H; Gao J; Liang W; Wu C; Chen T ChemSusChem; 2023 Apr; 16(7):e202202049. PubMed ID: 36628923 [TBL] [Abstract][Full Text] [Related]
12. Controllable Solution-Phase Epitaxial Growth of Q1D Sb Jin X; Fang Y; Salim T; Feng M; Yuan Z; Hadke S; Sum TC; Wong LH Adv Mater; 2021 Nov; 33(44):e2104346. PubMed ID: 34510590 [TBL] [Abstract][Full Text] [Related]
13. Sequential Coevaporation and Deposition of Antimony Selenosulfide Thin Film for Efficient Solar Cells. Yin Y; Jiang C; Ma Y; Tang R; Wang X; Zhang L; Li Z; Zhu C; Chen T Adv Mater; 2021 Mar; 33(11):e2006689. PubMed ID: 33569827 [TBL] [Abstract][Full Text] [Related]
14. Thermally Driven Point Defect Transformation in Antimony Selenosulfide Photovoltaic Materials. Che B; Cai Z; Xiao P; Li G; Huang Y; Tang R; Zhu C; Yang S; Chen T Adv Mater; 2023 Feb; 35(6):e2208564. PubMed ID: 36373586 [TBL] [Abstract][Full Text] [Related]
15. Crystal Growth Promotion and Defects Healing Enable Minimum Open-Circuit Voltage Deficit in Antimony Selenide Solar Cells. Liang G; Chen M; Ishaq M; Li X; Tang R; Zheng Z; Su Z; Fan P; Zhang X; Chen S Adv Sci (Weinh); 2022 Mar; 9(9):e2105142. PubMed ID: 35088583 [TBL] [Abstract][Full Text] [Related]
16. Tellurium Doping Inducing Defect Passivation for Highly Effective Antimony Selenide Thin Film Solar Cell. Chen G; Li X; Abbas M; Fu C; Su Z; Tang R; Chen S; Fan P; Liang G Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049333 [TBL] [Abstract][Full Text] [Related]
17. Organic Chloride Salt Interfacial Modified Crystallization for Efficient Antimony Selenosulfide Solar Cells. Azam M; Luo YD; Tang R; Chen S; Zheng ZH; Su ZH; Hassan A; Fan P; Ma HL; Chen T; Liang GX; Zhang XH ACS Appl Mater Interfaces; 2022 Jan; 14(3):4276-4284. PubMed ID: 35034451 [TBL] [Abstract][Full Text] [Related]
18. Grain Engineering of Sb Liu X; Cai Z; Wan L; Xiao P; Che B; Yang J; Niu H; Wang H; Zhu J; Huang YT; Zhu H; Zelewski SJ; Chen T; Hoye RLZ; Zhou R Adv Mater; 2024 Jan; 36(1):e2305841. PubMed ID: 37947249 [TBL] [Abstract][Full Text] [Related]
19. Electron Transport Layer Engineering Induced Carrier Dynamics Optimization for Efficient Cd-Free Sb Luo P; Imran T; Ren DL; Zhao J; Wu KW; Zeng YJ; Su ZH; Fan P; Zhang XH; Liang GX; Chen S Small; 2024 Jan; 20(4):e2306516. PubMed ID: 37715101 [TBL] [Abstract][Full Text] [Related]
20. Interfacial Engineering by Indium-Doped CdS for High Efficiency Solution Processed Sb Wu C; Jiang C; Wang X; Ding H; Ju H; Zhang L; Chen T; Zhu C ACS Appl Mater Interfaces; 2019 Jan; 11(3):3207-3213. PubMed ID: 30589526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]