These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 39263093)

  • 1. Power flow control and reliability improvement through adaptive PSO based network reconfiguration.
    Tantu AT; Biramo DB
    Heliyon; 2024 Sep; 10(17):e36668. PubMed ID: 39263093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new multi-objective-stochastic framework for reconfiguration and wind energy resource allocation in distribution network incorporating improved dandelion optimizer and uncertainty.
    Duan F; Basem A; Jasim DJ; Belhaj S; Eslami M; Khajehzadeh M; Palani S
    Sci Rep; 2024 Sep; 14(1):20857. PubMed ID: 39242801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing Ethiopian power distribution with novel hybrid renewable energy systems for sustainable reliability and cost efficiency.
    Agajie TF; Fopah-Lele A; Amoussou I; Khan B; Bajaj M; Zaitsev I; Tanyi E
    Sci Rep; 2024 May; 14(1):10711. PubMed ID: 38730031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid GWO-PSO based optimal placement and sizing of multiple PV-DG units for power loss reduction and voltage profile improvement.
    Alyu AB; Salau AO; Khan B; Eneh JN
    Sci Rep; 2023 Apr; 13(1):6903. PubMed ID: 37106042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal network reconfiguration for power loss minimization and voltage profile enhancement in distribution systems.
    Salau AO; Gebru YW; Bitew D
    Heliyon; 2020 Jun; 6(6):e04233. PubMed ID: 32613115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconfiguration of low-voltage distributed power sources within electric power's distribution network based on improved particle swarm-fish swarm fusibility algorithm.
    Xu X; Nie D; Xu W; Xiang E; Chen S; Nie Y; Fu X; Xu W; Han Y
    Sci Rep; 2024 Mar; 14(1):5444. PubMed ID: 38443671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved corona-virus herd immunity optimizer algorithm for network reconfiguration based on fuzzy multi-criteria approach.
    Naderipour A; Abdullah A; Marzbali MH; Arabi Nowdeh S
    Expert Syst Appl; 2022 Jan; 187():115914. PubMed ID: 34566274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Scalable Reconfiguration Model for the Postdisaster Network Connectivity of Resilient Power Distribution Systems.
    Imteaj A; Akbari V; Amini MH
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Siting and sizing of distributed generators based on improved simulated annealing particle swarm optimization.
    Su H
    Environ Sci Pollut Res Int; 2019 Jun; 26(18):17927-17938. PubMed ID: 29255978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability improvement of distribution systems using SSVR.
    Hosseini M; Shayanfar HA; Fotuhi-Firuzabad M
    ISA Trans; 2009 Jan; 48(1):98-106. PubMed ID: 19006802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal coordinated voltage control in active distribution networks using backtracking search algorithm.
    Tengku Hashim TJ; Mohamed A
    PLoS One; 2017; 12(10):e0177507. PubMed ID: 28991919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiobjective reconfiguration of unbalanced distribution networks using improved transient search optimization algorithm considering power quality and reliability metrics.
    Alanazi M; Alanazi A; Almadhor A; Memon ZA
    Sci Rep; 2022 Aug; 12(1):13686. PubMed ID: 35953705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
    ; ;
    Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel operated hybrid Arithmetic-Salp swarm optimizer for optimal allocation of multiple distributed generation units in distribution networks.
    Anjum ZM; Said DM; Hassan MY; Leghari ZH; Sahar G
    PLoS One; 2022; 17(4):e0264958. PubMed ID: 35417475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal power flow using hybrid firefly and particle swarm optimization algorithm.
    Khan A; Hizam H; Bin Abdul Wahab NI; Lutfi Othman M
    PLoS One; 2020; 15(8):e0235668. PubMed ID: 32776932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of modified artificial hummingbird algorithm in optimal power flow and generation capacity in power networks considering renewable energy sources.
    Emam MM; Houssein EH; Tolba MA; Zaky MM; Hamouda Ali M
    Sci Rep; 2023 Dec; 13(1):21446. PubMed ID: 38052877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust distribution networks reconfiguration considering the improvement of network resilience considering renewable energy resources.
    Choobdari M; Samiei Moghaddam M; Davarzani R; Azarfar A; Hoseinpour H
    Sci Rep; 2024 Oct; 14(1):23041. PubMed ID: 39362938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid cheetah particle swarm optimization based optimal hierarchical control of multiple microgrids.
    Mohamed MAE; Mahmoud AM; Saied EMM; Hadi HA
    Sci Rep; 2024 Apr; 14(1):9313. PubMed ID: 38653776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rule-based energy management scheme for long-term optimal capacity planning of grid-independent microgrid optimized by multi-objective grasshopper optimization algorithm.
    Bukar AL; Tan CW; Yiew LK; Ayop R; Tan WS
    Energy Convers Manag; 2020 Oct; 221():113161. PubMed ID: 32834297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Model Development to Predict Power Outage Duration (POD): A Case Study for Electric Utilities.
    Ghasemkhani B; Kut RA; Yilmaz R; Birant D; Arıkök YA; Güzelyol TE; Kut T
    Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.