These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 39263132)

  • 1. Study of cracks in the last-stage rotor blade of a steam turbine and the corrosion fatigue properties of its materials.
    Gao J; Tang Z; Guo B; Xu Z; Liu M; Sun W; Zhao Z
    Heliyon; 2024 Sep; 10(17):e36633. PubMed ID: 39263132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of environment on the fatigue crack growth behaviour of 12% Cr steel.
    Schönbauer BM; Stanzl-Tschegg SE
    Ultrasonics; 2013 Dec; 53(8):1399-405. PubMed ID: 23490013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Research on Water Droplet Erosion Resistance Characteristics of Turbine Blade Substrate and Strengthened Layers Materials.
    Di J; Wang S; Yan X; Jiang X; Lian J; Zhang Z; Xie Y
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32992870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism Study of Stress Corrosion Behavior under Tensile and Compressive Stresses for Welded Joint Used in Nuclear Turbine Rotor.
    Chu T
    Scanning; 2023; 2023():3647951. PubMed ID: 37854613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on Integrated Control Strategy for Wind Turbine Blade Life.
    An B; Liu J; Zhang Z
    Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law.
    Toribio J; Matos JC; González B
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.
    Zhang Z; Yang G; Hu K
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29693556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance.
    Al-Khudairi O; Hadavinia H; Little C; Gillmore G; Greaves P; Dyer K
    Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 28972548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructural Effects in the Development of Near-Neutral pH Stress Corrosion Cracks in Pipelines.
    Zhang C; Ran M; Wang Y; Zheng W
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical and Experimental Analysis of Horizontal-Axis Wind Turbine Blade Fatigue Life.
    Shah I; Khan A; Ali M; Shahab S; Aziz S; Noon MAA; Tipu JAK
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructural changes induced near crack tip during corrosion fatigue tests in austenitic-ferritic steel.
    Gołebiowski B; Swiatnicki WA; Gaspérini M
    J Microsc; 2010 Mar; 237(3):352-8. PubMed ID: 20500395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Study on Fatigue Crack Growth Rate of 4130X Material under Different Hydrogen Corrosion Conditions.
    Jiang S; Wang J; Zhao B; Zhang E
    Materials (Basel); 2024 Jan; 17(1):. PubMed ID: 38204109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of a fibre-reinforced composite blade for a 1 MW tidal turbine rotor under degradation of seawater.
    Jiang Y; Finnegan W; Wallace F; Flanagan M; Flanagan T; Goggins J
    J Ocean Eng Mar Energy; 2023 Mar; 9(3):1-18. PubMed ID: 37361141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Al⁻Zn Alloy Coating on Corrosion Fatigue Behavior of X80 Riser Steel.
    Han Z; Huang X; Yang Z
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31075918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Organizational Evolution on the Stress Corrosion Cracking of the Cr-Co-Ni-Mo Series of Ultra-High Strength Stainless Steel.
    Tian S; Liu Z; Fu R; Dong C; Wang X
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active Crack Obstruction Mechanisms in Crofer
    Fischer T; Kuhn B
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Corrosion Susceptibility of 304L Stainless Steel Exposed to Crevice Environments.
    Tsai KC; Yeh CP
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corrosion Fatigue Fracture Characteristics of FSW 7075 Aluminum Alloy Joints.
    Ma Q; Shao F; Bai L; Xu Q; Xie X; Shen M
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32967311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Stress Ratio and Loading Frequency on the Corrosion Fatigue Behavior of Smooth Steel Wire in Different Solutions.
    Wang S; Zhang D; Hu N; Zhang J
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ observation of intergranular crack nucleation in a grain boundary controlled austenitic stainless steel.
    Rahimi S; Engelberg DL; Duff JA; Marrow TJ
    J Microsc; 2009 Mar; 233(3):423-31. PubMed ID: 19250463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.