These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 39263140)
1. Lithological discrimination based on Landsat-9 OLI sensor and field observation data: The bana an-orogenic volcano-plutonic ring complex, West Cameroon line. Mohamed R; Tamen J; Ousmanou S; Yangouo FK; Nkouathio D Heliyon; 2024 Sep; 10(17):e36806. PubMed ID: 39263140 [TBL] [Abstract][Full Text] [Related]
2. Machine learning and remote sensing-based lithological mapping of the Duwi Shear-Belt area, Central Eastern Desert, Egypt. Ghoneim SM; Hamimi Z; Abdelrahman K; Khalifa MA; Shabban M; Abdelmaksoud AS Sci Rep; 2024 Jul; 14(1):17010. PubMed ID: 39043784 [TBL] [Abstract][Full Text] [Related]
3. An integrated remote sensing, petrology, and field geology analyses for Neoproterozoic basement rocks in some parts of the southern Egyptian-Nubian Shield. El-Desoky HM; Bachri I; El Mezayen AM; Abdel-Rahman AM; El-Awny H; El-Gammal AA; Alshehri F; Almadani S Sci Rep; 2024 Jun; 14(1):14761. PubMed ID: 38926393 [TBL] [Abstract][Full Text] [Related]
4. Towards better delineation of hydrothermal alterations via multi-sensor remote sensing and airborne geophysical data. Shebl A; Abdellatif M; Badawi M; Dawoud M; Fahil AS; Csámer Á Sci Rep; 2023 May; 13(1):7406. PubMed ID: 37149689 [TBL] [Abstract][Full Text] [Related]
5. Geochemical dataset of alluvial sediments in the Mbiame floodplain (NW Cameroon): Implication for provenance, paleoweathering, and maturity. Etutu MEMM; Eric BE; Amaya A; Vishiti A; Suh CE Data Brief; 2024 Jun; 54():110383. PubMed ID: 38617021 [TBL] [Abstract][Full Text] [Related]
6. Fuzzy-logic technique for gold mineralization prospecting using Landsat 9 OLI processing and fieldwork data in the Bibemi goldfield, north Cameroon. Ousmanou S; Fodoue Y; Wadjou JW; Kepnamou AD; Fozing EM; Kwékam M; Ikfi M Heliyon; 2024 Jan; 10(1):e23334. PubMed ID: 38148825 [TBL] [Abstract][Full Text] [Related]
7. Lithological discrimination and mineralogical mapping using Landsat-8 OLI and ASTER remote sensing data: Igoudrane region, jbel saghro, Anti Atlas, Morocco. Baid S; Tabit A; Algouti A; Algouti A; Nafouri I; Souddi S; Aboulfaraj A; Ezzahzi S; Elghouat A Heliyon; 2023 Jul; 9(7):e17363. PubMed ID: 37424592 [TBL] [Abstract][Full Text] [Related]
8. Remote sensing of the chlorophyll-a based on OLI/Landsat-8 and MSI/Sentinel-2A (Barra Bonita reservoir, Brazil). Watanabe F; Alcântara E; Rodrigues T; Rotta L; Bernardo N; Imai N An Acad Bras Cienc; 2018 Aug; 90(2 suppl 1):1987-2000. PubMed ID: 28876398 [TBL] [Abstract][Full Text] [Related]
9. The geochemistry, origin, and hydrothermal alteration mapping associated with the gold-bearing quartz veins at Hamash district, South Eastern Desert, Egypt. Abdel-Rahman AM; El-Desoky HM; Shebl A; El-Awny H; Amer YZ; Csámer Á Sci Rep; 2023 Sep; 13(1):15058. PubMed ID: 37700069 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Roy DP; Kovalskyy V; Zhang HK; Vermote EF; Yan L; Kumar SS; Egorov A Remote Sens Environ; 2016 Jan; Volume 185(Iss 1):57-70. PubMed ID: 32020954 [TBL] [Abstract][Full Text] [Related]
11. A review on advancements in lithological mapping utilizing machine learning algorithms and remote sensing data. El-Omairi MA; El Garouani A Heliyon; 2023 Sep; 9(9):e20168. PubMed ID: 37809824 [TBL] [Abstract][Full Text] [Related]
12. Identification of Water Bodies in a Landsat 8 OLI Image Using a J48 Decision Tree. Acharya TD; Lee DH; Yang IT; Lee JK Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27420067 [TBL] [Abstract][Full Text] [Related]
13. Correction of Thin Cirrus Absorption Effects in Landsat 8 Thermal Infrared Sensor Images Using the Operational Land Imager Cirrus Band on the Same Satellite Platform. Gao BC; Li RR; Yang Y; Anderson M Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066094 [TBL] [Abstract][Full Text] [Related]
14. Landsat-8 data for chromite prospecting in the Logar Massif, Afghanistan. Abdelaziz R; Abd El-Rahman Y; Wilhelm S Heliyon; 2018 Feb; 4(2):e00542. PubMed ID: 29560456 [TBL] [Abstract][Full Text] [Related]
15. Geological controls of mineralization occurrences in the Egyptian Eastern Desert using advanced integration of remote sensing and magnetic data. Eldosouky AM; Eleraki M; Mansour A; Saada SA; Zamzam S Sci Rep; 2024 Jul; 14(1):16700. PubMed ID: 39030223 [TBL] [Abstract][Full Text] [Related]
16. Performance of Landsat 8 Operational Land Imager for Mapping Ice Sheet Velocity. Jeong S; Howat IM Remote Sens Environ; 2015 Dec; 170():90-101. PubMed ID: 31080298 [TBL] [Abstract][Full Text] [Related]
17. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Vermote E; Justice C; Claverie M; Franch B Remote Sens Environ; 2016 Apr; Volume 185(Iss 2):46-56. PubMed ID: 32020955 [TBL] [Abstract][Full Text] [Related]
18. Potential of land degradation index for soil salinity mapping in irrigated agricultural land in a semi-arid region using Landsat-OLI and Sentinel-MSI data. Chaaou A; Chikhaoui M; Naimi M; Miad AKE; Bokoye AI; Ennasr MS; Harche SE Environ Monit Assess; 2024 Aug; 196(9):843. PubMed ID: 39187726 [TBL] [Abstract][Full Text] [Related]
19. Detecting, extracting, and mapping of inland surface water using Landsat 8 Operational Land Imager: A case study of Pune district, India. Kulkarni R; Khare K; Khanum H F1000Res; 2022; 11():774. PubMed ID: 36704046 [No Abstract] [Full Text] [Related]
20. Remote sensing of diffuse attenuation coefficient patterns from Landsat 8 OLI imagery of turbid inland waters: A case study of Dongting Lake. Zheng Z; Ren J; Li Y; Huang C; Liu G; Du C; Lyu H Sci Total Environ; 2016 Dec; 573():39-54. PubMed ID: 27552729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]