These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 39263977)
1. Efficient Encapsulation of β-Lapachone into Self-Immolative Polymer Nanoparticles for Cyclic Amplification of Intracellular Reactive Oxygen Species Stress. Guo L; Ding Z; Hu J; Liu S ACS Nano; 2024 Sep; ():. PubMed ID: 39263977 [TBL] [Abstract][Full Text] [Related]
2. Cascade-amplified self-immolative polymeric prodrug for cancer therapy by disrupting redox homeostasis. Dey A; Jeon J; Yoon B; Li Y; Park JH J Control Release; 2023 Jun; 358():555-565. PubMed ID: 37182804 [TBL] [Abstract][Full Text] [Related]
3. Self-Immolative Amphiphilic Poly(ferrocenes) for Synergistic Amplification of Oxidative Stress in Tumor Therapy. Xu J; Tan J; Song C; Zhang G; Hu X; Liu S Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202303829. PubMed ID: 37235518 [TBL] [Abstract][Full Text] [Related]
4. Integrated block copolymer prodrug nanoparticles for combination of tumor oxidative stress amplification and ROS-responsive drug release. Yin W; Ke W; Chen W; Xi L; Zhou Q; Mukerabigwi JF; Ge Z Biomaterials; 2019 Mar; 195():63-74. PubMed ID: 30612064 [TBL] [Abstract][Full Text] [Related]
5. Acid-responsive endosomolytic polymeric nanoparticles with amplification of intracellular oxidative stress for prodrug delivery and activation. Lu N; Xi L; Zha Z; Wang Y; Han X; Ge Z Biomater Sci; 2021 Jun; 9(13):4613-4629. PubMed ID: 34190224 [TBL] [Abstract][Full Text] [Related]
6. A dual responsive nitric oxide / β-lapachone co-delivery platform for redox imbalance-enhanced tumor therapy. Yang HZ; Chen JJ; Zhang L; Tian XL; Wang R; Pu L; Yu XQ; Zhang J Eur J Pharm Biopharm; 2024 Aug; 201():114348. PubMed ID: 38844097 [TBL] [Abstract][Full Text] [Related]
7. A Novel Polyamino Acid Sulfur Dioxide Prodrug Synergistically Elevates ROS with β-Lapachone in Cancer Treatment. Tang B; Zhang Y; Liu X; Wang Y; He P J Pharm Sci; 2024 May; 113(5):1239-1247. PubMed ID: 38042342 [TBL] [Abstract][Full Text] [Related]
8. Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Huang G; Chen H; Dong Y; Luo X; Yu H; Moore Z; Bey EA; Boothman DA; Gao J Theranostics; 2013; 3(2):116-26. PubMed ID: 23423156 [TBL] [Abstract][Full Text] [Related]
9. Dual pH/ROS-Responsive Nanoplatform with Deep Tumor Penetration and Self-Amplified Drug Release for Enhancing Tumor Chemotherapeutic Efficacy. Li Y; Chen M; Yao B; Lu X; Song B; Vasilatos SN; Zhang X; Ren X; Yao C; Bian W; Sun L Small; 2020 Aug; 16(32):e2002188. PubMed ID: 32627387 [TBL] [Abstract][Full Text] [Related]
10. Amplification of Oxidative Stress in MCF-7 Cells by a Novel pH-Responsive Amphiphilic Micellar System Enhances Anticancer Therapy. Dong K; Lei Q; Qi H; Zhang Y; Cui N; Wu X; Xie L; Yan X; Lu T Mol Pharm; 2019 Feb; 16(2):689-700. PubMed ID: 30601012 [TBL] [Abstract][Full Text] [Related]
11. A novel ROS-activable self-immolative prodrug for tumor-specific amplification of oxidative stress and enhancing chemotherapy of mitoxantrone. Zhang H; Chen W; Wang J; Du W; Wang B; Song L; Hu Y; Ma X Biomaterials; 2023 Feb; 293():121954. PubMed ID: 36538847 [TBL] [Abstract][Full Text] [Related]
12. Self-amplified chain-shattering cinnamaldehyde-based poly(thioacetal) boosts cancer chemo-immunotherapy. Zong Q; Li J; Xiao X; Du X; Yuan Y Acta Biomater; 2022 Dec; 154():97-107. PubMed ID: 36210042 [TBL] [Abstract][Full Text] [Related]
13. Cyclic amplification of intracellular ROS boosts enzymatic prodrug activation for enhanced chemo-immunotherapy. Liu Y; Jiang M; Zhao Z; Wang N; Wang K; Yuan Y Acta Biomater; 2023 Aug; 166():567-580. PubMed ID: 37207741 [TBL] [Abstract][Full Text] [Related]
14. A tumor-specific ROS self-supply enhanced cascade-responsive prodrug activation nanosystem for amplified chemotherapy against multidrug-resistant tumors. Wang J; Zhang H; Lv J; Zheng Y; Li M; Yang G; Wei X; Li N; Huang H; Li T; Qin X; Li S; Wu C; Zhang W; Liu Y; Yang H Acta Biomater; 2023 Jul; 164():522-537. PubMed ID: 37072069 [TBL] [Abstract][Full Text] [Related]
15. Assessment of various formulation approaches for the application of beta-lapachone in prostate cancer therapy. Wu X; Kasselouri A; Vergnaud-Gauduchon J; Rosilio V Int J Pharm; 2020 Apr; 579():119168. PubMed ID: 32087264 [TBL] [Abstract][Full Text] [Related]
16. Yeast cytotoxic sensitivity to the antitumour agent β-lapachone depends mainly on oxidative stress and is largely independent of microtubule- or topoisomerase-mediated DNA damage. Ramos-Pérez C; Lorenzo-Castrillejo I; Quevedo O; García-Luis J; Matos-Perdomo E; Medina-Coello C; Estévez-Braun A; Machín F Biochem Pharmacol; 2014 Nov; 92(2):206-19. PubMed ID: 25241291 [TBL] [Abstract][Full Text] [Related]
17. A cancer-specific activatable theranostic nanodrug for enhanced therapeutic efficacy via amplification of oxidative stress. Yu XA; Lu M; Luo Y; Hu Y; Zhang Y; Xu Z; Gong S; Wu Y; Ma XN; Yu BY; Tian J Theranostics; 2020; 10(1):371-383. PubMed ID: 31903126 [No Abstract] [Full Text] [Related]
18. Cinnamaldehyde-Based Poly(ester-thioacetal) To Generate Reactive Oxygen Species for Fabricating Reactive Oxygen Species-Responsive Nanoparticles. Xu L; Zhao M; Zhang H; Gao W; Guo Z; Zhang X; Zhang J; Cao J; Pu Y; He B Biomacromolecules; 2018 Dec; 19(12):4658-4667. PubMed ID: 30418756 [TBL] [Abstract][Full Text] [Related]