These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 39263977)
21. Reactive oxygen species-responsive nanoprodrug with quinone methides-mediated GSH depletion for improved chlorambucil breast cancers therapy. Luo CQ; Zhou YX; Zhou TJ; Xing L; Cui PF; Sun M; Jin L; Lu N; Jiang HL J Control Release; 2018 Mar; 274():56-68. PubMed ID: 29409835 [TBL] [Abstract][Full Text] [Related]
22. Self-immolative nanosensitizer for glutathione depletion- assisted sonodynamic therapy. Kim CH; You DG; E K PK; Han KH; Um W; Lee J; Lee JA; Jung JM; Kang H; Park JH Theranostics; 2022; 12(17):7465-7475. PubMed ID: 36438485 [No Abstract] [Full Text] [Related]
23. A reactive oxygen species-replenishing coordination polymer nanomedicine disrupts redox homeostasis and induces concurrent apoptosis-ferroptosis for combinational cancer therapy. Zhang Z; Pan Y; Cun JE; Li J; Guo Z; Pan Q; Gao W; Pu Y; Luo K; He B Acta Biomater; 2022 Oct; 151():480-490. PubMed ID: 35926781 [TBL] [Abstract][Full Text] [Related]
24. pH-Responsive Micellar Nanoparticles for the Delivery of a Self-Amplifying ROS-Activatable Prodrug. Kannaujiya VK; Qiao Y; Sheikh RH; Xue J; Dargaville TR; Liang K; Wich PR Biomacromolecules; 2024 Mar; 25(3):1775-1789. PubMed ID: 38377594 [TBL] [Abstract][Full Text] [Related]
25. eIF2 kinases mediate β-lapachone toxicity in yeast and human cancer cells. Menacho-Márquez M; Rodríguez-Hernández CJ; Villaronga MÁ; Pérez-Valle J; Gadea J; Belandia B; Murguía JR Cell Cycle; 2015; 14(4):630-40. PubMed ID: 25590579 [TBL] [Abstract][Full Text] [Related]
26. Dual pH-sensitive oxidative stress generating micellar nanoparticles as a novel anticancer therapeutic agent. Park S; Kwon B; Yang W; Han E; Yoo W; Kwon BM; Lee D J Control Release; 2014 Dec; 196():19-27. PubMed ID: 25278257 [TBL] [Abstract][Full Text] [Related]
27. β-lapachone significantly increases the effect of ionizing radiation to cause mitochondrial apoptosis via JNK activation in cancer cells. Park MT; Song MJ; Lee H; Oh ET; Choi BH; Jeong SY; Choi EK; Park HJ PLoS One; 2011; 6(10):e25976. PubMed ID: 21998736 [TBL] [Abstract][Full Text] [Related]
28. Triggering multiple modalities of cell death via dual-responsive nanomedicines to address the narrow therapeutic window of β-lapachone. Liu F; Li Y; Li Y; Wang Z; Li X; Liu Y; Zhao Y J Colloid Interface Sci; 2025 Jan; 678(Pt B):915-924. PubMed ID: 39270391 [TBL] [Abstract][Full Text] [Related]
29. Fluorescent boronate-based polymer nanoparticles with reactive oxygen species (ROS)-triggered cargo release for drug-delivery applications. Jäger E; Höcherl A; Janoušková O; Jäger A; Hrubý M; Konefał R; Netopilik M; Pánek J; Šlouf M; Ulbrich K; Štěpánek P Nanoscale; 2016 Apr; 8(13):6958-63. PubMed ID: 26961769 [TBL] [Abstract][Full Text] [Related]
30. A pH/ROS cascade-responsive and self-accelerating drug release nanosystem for the targeted treatment of multi-drug-resistant colon cancer. Chang N; Zhao Y; Ge N; Qian L Drug Deliv; 2020 Dec; 27(1):1073-1086. PubMed ID: 32706272 [TBL] [Abstract][Full Text] [Related]
31. Development of ROS-responsive amino acid-based poly(ester amide) nanoparticle for anticancer drug delivery. Xu Q; Chu CC J Biomed Mater Res A; 2021 Apr; 109(4):524-537. PubMed ID: 32529749 [TBL] [Abstract][Full Text] [Related]
32. Quinone-methide species, a gateway to functional molecular systems: from self-immolative dendrimers to long-wavelength fluorescent dyes. Gnaim S; Shabat D Acc Chem Res; 2014 Oct; 47(10):2970-84. PubMed ID: 25181456 [TBL] [Abstract][Full Text] [Related]
33. Investigation of the intracellular oxidative stress amplification, safety and anti-tumor effect of a kind of novel redox-responsive micelle. Dong K; Yang C; Yan Y; Wang P; Sun Y; Wang K; Lu T; Chen Q; Zhang Y; Xing J; Dong Y J Mater Chem B; 2018 Feb; 6(7):1105-1117. PubMed ID: 32254298 [TBL] [Abstract][Full Text] [Related]
34. A ROS-responsive polymeric prodrug nanosystem with self-amplified drug release for PSMA (-) prostate cancer specific therapy. Wang Y; Zhang Y; Ru Z; Song W; Chen L; Ma H; Sun L J Nanobiotechnology; 2019 Aug; 17(1):91. PubMed ID: 31451114 [TBL] [Abstract][Full Text] [Related]
35. CD44-specific nanoparticles for redox-triggered reactive oxygen species production and doxorubicin release. Lin CW; Lu KY; Wang SY; Sung HW; Mi FL Acta Biomater; 2016 Apr; 35():280-92. PubMed ID: 26853764 [TBL] [Abstract][Full Text] [Related]
36. β-Lapachone Induces Acute Oxidative Stress in Rat Primary Astrocyte Cultures that is Terminated by the NQO1-Inhibitor Dicoumarol. Steinmeier J; Kube S; Karger G; Ehrke E; Dringen R Neurochem Res; 2020 Oct; 45(10):2442-2455. PubMed ID: 32789798 [TBL] [Abstract][Full Text] [Related]
37. Modulating intracellular oxidative stress via engineered nanotherapeutics. Hu J; Liu S J Control Release; 2020 Mar; 319():333-343. PubMed ID: 31881318 [TBL] [Abstract][Full Text] [Related]
38. Hyperbranched Self-Immolative Polymers (hSIPs) for Programmed Payload Delivery and Ultrasensitive Detection. Liu G; Zhang G; Hu J; Wang X; Zhu M; Liu S J Am Chem Soc; 2015 Sep; 137(36):11645-55. PubMed ID: 26327337 [TBL] [Abstract][Full Text] [Related]
39. Reactive oxygen species-responsive branched poly (β-amino ester) with robust efficiency for cytosolic protein delivery. Lu R; Zheng Y; Wang M; Lin J; Zhao Z; Chen L; Zhang J; Liu X; Yin L; Chen Y Acta Biomater; 2022 Oct; 152():355-366. PubMed ID: 36084925 [TBL] [Abstract][Full Text] [Related]
40. Dual Stimuli-Responsive Nanoprecursor of Ascorbic Acid and Quinone Methide Disrupting Redox Homeostasis for Cancer Treatment. Dey A; Kumar E K P; Kim CH; Li Y; Park JH ACS Omega; 2024 Jul; 9(29):32124-32132. PubMed ID: 39072103 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]