These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 39264358)

  • 1. Synergistic Integration of Physical Embedding and Machine Learning Enabling Precise and Reliable Force Field.
    Xu L; Jiang J
    J Chem Theory Comput; 2024 Sep; ():. PubMed ID: 39264358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A data-guided approach for the evaluation of zeolites for hydrogen storage with the aid of molecular simulations.
    Manda T; Barasa GO; Louis H; Irfan A; Agumba JO; Lugasi SO; Pembere AMS
    J Mol Model; 2024 Jan; 30(2):43. PubMed ID: 38236500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics-informed neural networks based on adaptive weighted loss functions for Hamilton-Jacobi equations.
    Liu Y; Cai L; Chen Y; Wang B
    Math Biosci Eng; 2022 Sep; 19(12):12866-12896. PubMed ID: 36654026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defect driven physics-informed neural network framework for fatigue life prediction of additively manufactured materials.
    Wang L; Zhu SP; Luo C; Niu X; He JC
    Philos Trans A Math Phys Eng Sci; 2023 Nov; 381(2260):20220386. PubMed ID: 37742712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physics-Informed Online Learning for Temperature Prediction in Metal AM.
    Sajadi P; Rahmani Dehaghani M; Tang Y; Wang GG
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On acoustic fields of complex scatters based on physics-informed neural networks.
    Wang H; Li J; Wang L; Liang L; Zeng Z; Liu Y
    Ultrasonics; 2023 Feb; 128():106872. PubMed ID: 36323059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Physics-Informed Automatic Neural Network Generation Framework for Emerging Device Modeling.
    Guo G; You H; Li C; Tang Z; Li O
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force-field-enhanced neural network interactions: from local equivariant embedding to atom-in-molecule properties and long-range effects.
    Plé T; Lagardère L; Piquemal JP
    Chem Sci; 2023 Nov; 14(44):12554-12569. PubMed ID: 38020379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physics Informed Neural Networks (PINN) for Low Snr Magnetic Resonance Electrical Properties Tomography (MREPT).
    Inda AJG; Huang SY; İmamoğlu N; Qin R; Yang T; Chen T; Yuan Z; Yu W
    Diagnostics (Basel); 2022 Oct; 12(11):. PubMed ID: 36359471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physics-informed machine learning methods for biomass gasification modeling by considering monotonic relationships.
    Ren S; Wu S; Weng Q
    Bioresour Technol; 2023 Feb; 369():128472. PubMed ID: 36509306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated Study on Methane Activation: Exploring Main Group Frustrated Lewis Pairs through Density Functional Theory, Machine Learning, and Machine-Learned Force Fields.
    Migliaro I; Cundari TR
    J Chem Theory Comput; 2024 Jul; 20(14):6388-6401. PubMed ID: 38941286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-consistent determination of long-range electrostatics in neural network potentials.
    Gao A; Remsing RC
    Nat Commun; 2022 Mar; 13(1):1572. PubMed ID: 35322046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?
    Dauber-Osguthorpe P; Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):133-203. PubMed ID: 30506158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems.
    Taneja K; He X; He Q; Zhao X; Lin YA; Loh KJ; Chen JS
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 35972808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of Machine Learning Techniques in Soft Tissue Biomechanics and Biomaterials.
    Donmazov S; Saruhan EN; Pekkan K; Piskin S
    Cardiovasc Eng Technol; 2024 Jul; ():. PubMed ID: 38956008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Machine Learning Force Field for Bio-Macromolecular Modeling Based on Quantum Chemistry-Calculated Interaction Energy Datasets.
    Fan ZX; Chao SD
    Bioengineering (Basel); 2024 Jan; 11(1):. PubMed ID: 38247928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myo-regressor Deep Informed Neural NetwOrk (Myo-DINO) for fast MR parameters mapping in neuromuscular disorders.
    Barzaghi L; Brero F; Cabini RF; Paoletti M; Monforte M; Lizzi F; Santini F; Deligianni X; Bergsland N; Ravaglia S; Cavagna L; Diamanti L; Bonizzoni C; Lascialfari A; Figini S; Ricci E; Postuma I; Pichiecchio A
    Comput Methods Programs Biomed; 2024 Nov; 256():108399. PubMed ID: 39236561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PhyNEO: A Neural-Network-Enhanced Physics-Driven Force Field Development Workflow for Bulk Organic Molecule and Polymer Simulations.
    Chen J; Yu K
    J Chem Theory Comput; 2024 Jan; 20(1):253-265. PubMed ID: 38118076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Neural Network Based Predictions of Protein Interactions Using Primary Sequences.
    Li H; Gong XJ; Yu H; Zhou C
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30071670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.